首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Earthworms can ‘biotransform’ or ‘biodegrade’ chemical contaminants, rendering them harmless in their bodies, and can bioaccumulate them in their tissues. They ‘absorb’ the dissolved chemicals through their moist ‘body wall’ due to the interstitial water and also ingest by ‘mouth’ while soil passes through the gut. Since the advent of the nanotechnology era, the environmental sink has been continuously receiving engineered nanomaterials as well as their derivatives. Our current understanding of the potential impact of nanomaterials and their natural scavenger is limited. In the present investigation, we studied the cellular uptake of ZnO nanoparticles (NPs) by coelomocytes especially by chloragocytes of Eisenia fetida and their role as nanoscavenger. Results from exposure to 100- and 50-nm ZnO NPs indicate that coelomocytes of the earthworm E. fetida show no significant DNA damage at a dose lower than 3 mg/l and have the potential ability to uptake ZnO NPs from the soil ecosystem and transform them into microparticles.  相似文献   

4.
5.
The color of bracts generally turns yellow or black from green during cereal grain development. However, the impact of these phenotypic changes on photosynthetic physiology during black bract formation remains unclear. Two oat cultivars (Avena sativa L.), ‘Triple Crown’ and ‘Qinghai 444’, with yellow and black bracts, respectively, were found to both have green bracts at the heading stage, but started to turn black at the flowering stage and become blackened at the milk stage for ‘Qinghai 444’. Their photosynthetic characteristics were analyzed and compared, and the key genes, proteins and regulatory pathways affecting photosynthetic physiology were determined in ‘Triple Crown’ and ‘Qinghai 444’ bracts. The results show that the actual PSII photochemical efficiency and PSII electron transfer rate of ‘Qinghai 444’ bracts had no significant changes at the heading and milk stages but decreased significantly (p < 0.05) at the flowering stage compared with ‘Triple Crown’. The chlorophyll content decreased, the LHCII involved in the assembly of supercomplexes in the thylakoid membrane was inhibited, and the expression of Lhcb1 and Lhcb5 was downregulated at the flowering stage. During this critical stage, the expression of Bh4 and C4H was upregulated, and the biosynthetic pathway of p-coumaric acid using tyrosine and phenylalanine as precursors was also enhanced. Moreover, the key upregulated genes (CHS, CHI and F3H) of anthocyanin biosynthesis might complement the impaired PSII activity until recovered at the milk stage. These findings provide a new insight into how photosynthesis alters during the process of oat bract color transition to black.  相似文献   

6.
Leaf coloration changes evoke different photosynthetic responses among different poplar cultivars. The aim of this study is to investigate the photosynthetic difference between a red leaf cultivar (ZHP) and a green leaf (L2025) cultivar of Populus deltoides. In this study, ‘ZHP’ exhibited wide ranges and huge potential for absorption and utilization of light energy and CO2 concentration which were similar to those in ‘L2025’ and even showed a stronger absorption for weak light. However, with the increasing light intensity and CO2 concentration, the photosynthetic capacity in both ‘L2025’ and ‘ZHP’ was gradually restricted, and the net photosynthetic rate (Pn) in ‘ZHP’ was significantly lower than that in ‘L2025’under high light or high CO2 conditions, which was mainly attributed to stomatal regulation and different photosynthetic efficiency (including the light energy utilization efficiency and photosynthetic CO2 assimilation efficiency) in these two poplars. Moreover, the higher anthocyanin content in ‘ZHP’ than that in ‘L2025’ was considered to be closely related to the decreased photosynthetic efficiency in ‘ZHP’. According to the results from the JIP-test, the capture efficiency of the reaction center for light energy in ‘L2025’ was significantly higher than that in ‘ZHP’. Interestingly, the higher levels of light quantum caused relatively higher accumulation of QA- in ‘L2025’, which blocked the electron transport and weakened the photosystem II (PSII) performance as compared with ‘ZHP’; however, the decreased capture of light quantum also could not promote the utilization of light energy, which was the key to the low photosynthetic efficiency in ‘ZHP’. The differential expressions of a series of photosynthesis-related genes further promoted these specific photosynthetic processes between ‘L2025’ and ‘ZHP’.  相似文献   

7.
The low-molecular weight glutenin subunit (LMW-GS) composition of wheat (Triticum aestivum) flour has important effects on end-use quality. However, assessing the contributions of each LMW-GS to flour quality remains challenging because of the complex LMW-GS composition and allelic variation among wheat cultivars. Therefore, accurate and reliable determination of LMW-GS alleles in germplasm remains an important challenge for wheat breeding. In this study, we used an optimized reversed-phase HPLC method and proteomics approach comprising 2-D gels coupled with liquid chromatography–tandem mass spectrometry (MS/MS) to discriminate individual LMW-GSs corresponding to alleles encoded by the Glu-A3, Glu-B3, and Glu-D3 loci in the ‘Aroona’ cultivar and 12 ‘Aroona’ near-isogenic lines (ARILs), which contain unique LMW-GS alleles in the same genetic background. The LMW-GS separation patterns for ‘Aroona’ and ARILs on chromatograms and 2-D gels were consistent with those from a set of 10 standard wheat cultivars for Glu-3. Furthermore, 12 previously uncharacterized spots in ‘Aroona’ and ARILs were excised from 2-D gels, digested with chymotrypsin, and subjected to MS/MS. We identified their gene haplotypes and created a 2-D gel map of LMW-GS alleles in the germplasm for breeding and screening for desirable LMW-GS alleles for wheat quality improvement.  相似文献   

8.
9.
In Escherichia coli, DNA replication termination is orchestrated by two clusters of Ter sites forming a DNA replication fork trap when bound by Tus proteins. The formation of a ‘locked’ Tus–Ter complex is essential for halting incoming DNA replication forks. However, the absence of replication fork arrest at some Ter sites raised questions about their significance. In this study, we examined the genome-wide distribution of Tus and found that only the six innermost Ter sites (TerA–E and G) were significantly bound by Tus. We also found that a single ectopic insertion of TerB in its non-permissive orientation could not be achieved, advocating against a need for ‘back-up’ Ter sites. Finally, examination of the genomes of a variety of Enterobacterales revealed a new replication fork trap architecture mostly found outside the Enterobacteriaceae family. Taken together, our data enabled the delineation of a narrow ancestral Tus-dependent DNA replication fork trap consisting of only two Ter sites.  相似文献   

10.
The introduction of herbaceous peony (Paeonia lactiflora Pall.) in low-latitude areas is of great significance to expand the landscape application of this world-famous ornamental. With the hazards of climate warming, warm winters occurs frequently, which makes many excellent northern herbaceous peony cultivars unable to meet their chilling requirements (CR) and leads to their poor growth and flowering in southern China. Exploring the endodormancy release mechanism of underground buds is crucial for improving low-CR cultivar screening and breeding. A systematic study was conducted on P. lactiflora ‘Meiju’, a screened cultivar with a typical low-CR trait introduced from northern China, at the morphological, physiological and molecular levels. The CR value of ‘Meiju’ was further verified as 677.5 CUs based on the UT model and morphological observation. As a kind of signal transducer, reactive oxygen species (ROS) released a signal to enter dormancy, which led to corresponding changes in carbohydrate and hormone metabolism in buds, thus promoting underground buds to acquire strong cold resistance and enter endodormancy. The expression of important genes related to ABA metabolism, such as NCED3, PP2C, CBF4 and ABF2, reached peaks at the critical stage of endodormancy release (9 January) and then decreased rapidly; the expression of the GA2ox8 gene related to GA synthesis increased significantly in the early stage of endodormancy release and decreased rapidly after the release of ecodormancy (23 January). Cytological observation showed that the period when the sugar and starch contents decreased and the ABA/GA ratio decreased was when ‘Meiju’ bud endodormancy was released. This study reveals the endodormancy regulation mechanism of ‘Meiju’ buds with the low-CR trait, which lays a theoretical foundation for breeding new herbaceous peony cultivars with the low-CR trait.  相似文献   

11.
12.
Short-chain dehydrogenase/reductase (SDR) belongs to the NAD(P)(H)-dependent oxidoreductase superfamily. Limited investigations reveal that SDRs participate in diverse metabolisms. A genome-wide identification of the SDR gene family in M. truncatula was conducted. A total of 213 MtSDR genes were identified, and they were distributed on all chromosomes unevenly. MtSDR proteins were categorized into seven subgroups based on phylogenetic analysis and three types including ‘classic’, ‘extended’, and ‘atypical’, depending on the cofactor-binding site and active site. Analysis of the data from M. truncatula Gene Expression Atlas (MtGEA) showed that above half of MtSDRs were expressed in at least one organ, and lots of MtSDRs had a preference in a tissue-specific expression. The cis-acting element responsive to plant hormones (salicylic acid, ABA, auxin, MeJA, and gibberellin) and stresses were found in the promoter of some MtSDRs. Many genes of MtSDR7C, MtSDR65C, MtSDR110C, MtSDR114C, and MtSDR108E families were responsive to drought, salt, and cold. The study provides useful information for further investigation on biological functions of MtSDRs, especially in abiotic stress adaptation, in the future.  相似文献   

13.
14.
Anthocyanins are responsible for the red color of strawberry, they are a subclass of flavonoids synthesized in cytosol and transferred to vacuole to form the visible color. Previous studies in model and ornamental plants indicated members of the glutathione S-transferase (GST) gene family were involved in vacuolar accumulation of anthocyanins. In the present study, a total of 130 FaGST genes were identified in the genome of cultivated strawberry (Fragaria × ananassa), which were unevenly distributed across the 28 chromosomes from the four subgenomes. Evolutionary analysis revealed the expansion of FaGST family was under stable selection and mainly drove by WGD/segmental duplication event. Classification and phylogenetic analysis indicated that all the FaGST genes were clarified into seven subclasses, among which FaGST1, FaGST37, and FaGST97 belonging to Phi class were closely related to FvRAP, an anthocyanin-related GST of wildwood strawberry, and this clade was clustered with other known anthocyanin-related GSTs. RNAseq-based expression analysis at different developmental stages of strawberry revealed that the expression of FaGST1, FaGST37, FaGST39, FaGST73, and FaGST97 was gradually increased during the fruit ripening, consistent with the anthocyanins accumulation. These expression patterns of those five FaGST genes were also significantly correlated with those of other anthocyanin biosynthetic genes such as FaCHI, FaCHS, and FaANS, as well as anthocyanin regulatory gene FaMYB10. These results indicated FaGST1, FaGST37, FaGST39, FaGST73, and FaGST97 may function in vacuolar anthocyanin accumulation in cultivated strawberry.  相似文献   

15.
16.
Fabricated ecosystems (EcoFABs) offer an innovative approach to in situ examination of microbial establishment patterns around plant roots using nondestructive, high-resolution microscopy. Previously high-resolution imaging was challenging because the roots were not constrained to a fixed distance from the objective. Here, we describe a new ‘Imaging EcoFAB’ and the use of this device to image the entire root system of growing Brachypodium distachyon at high resolutions (20×, 40×) over a 3-week period. The device is capable of investigating root–microbe interactions of multimember communities. We examined nine strains of Pseudomonas simiae with different fluorescent constructs to B. distachyon and individual cells on root hairs were visible. Succession in the rhizosphere using two different strains of P. simiae was examined, where the second addition was shown to be able to establish in the root tissue. The device was suitable for imaging with different solid media at high magnification, allowing for the imaging of fungal establishment in the rhizosphere. Overall, the Imaging EcoFAB could improve our ability to investigate the spatiotemporal dynamics of the rhizosphere, including studies of fluorescently-tagged, multimember, synthetic communities.  相似文献   

17.
We present the electrostatic complexation between polyelectrolytes and charged nanoparticles. The nanoparticles in solution are γ-Fe2O3 (maghemite) spheres with 8.3 nm diameter and anionic surface charges. The complexation was monitored using three different formulation pathways such as direct mixing, dilution, and dialysis. In the first process, the hybrids were obtained by mixing stock solutions of polymers and nanoparticles. A ‘destabilization state’ with sharp and intense maximum aggregation was found at charges stoichiometry (isoelectric point). While on the two sides of the isoelectric point, ‘long-lived stable clusters state’ (arrested states) were observed. Dilution and dialysis processes were based on controlled desalting kinetics according to methods developed in molecular biology. Under an external magnetic field (B = 0.3 T), from dialysis at isoelectric point and at arrested states, cationic polyelectrolytes can ‘paste’ these magnetic nanoparticles (NPs) together to yield irregular aggregates (size of 100 μm) and regular rod-like aggregates, respectively. These straight magnetic wires were fabricated with diameters around 200 nm and lengths comprised between 1 μm and 0.5 mm. The wires can have either positive or negative charges on their surface. After analyzing their orientational behavior under an external rotating field, we also showed that the wires made from different polyelectrolytes have the same magnetic property. The recipe used a wide range of polyelectrolytes thereby enhancing the versatility and applied potentialities of the method. This simple and general approach presents significant perspective for the fabrication of hybrid functional materials.  相似文献   

18.
In lily reproduction, the mechanism of formation of bulbs has been a hot topic. However, studies on stem bulblet formation are limited. Stem bulblets, formed in the leaf axils of under- and above-ground stems, provide lilies with a strong capacity for self-propagation. First, we showed that above-ground stem bulblets can be induced by spraying 100 mg/L 6-BA on the LA hybrid lily ‘Aladdin’, with reduced endogenous IAA and GA4 and a higher relative content of cytokinins. Then, expression patterns of three potential genes (two KNOTTED1-like homeobox (KNOX) and one partial BEL1-like homeobox (BELL)), during stem bulblet formation from our previous study, were determined by RT-qPCR, presenting a down-up trend in KNOXs and a rising tendency in BELL. The partial BELL gene was cloned by RACE from L. ‘Aladdin’ and denoted LaBEL1. Physical interactions of LaKNOX1-LaBEL1 and LaKNOX1-LaKNOX2 were confirmed by yeast two-hybrid and bimolecular fluorescence complementation assays. Furthermore, hormonal regulatory patterns of single LaKNOX1, LaKNOX2, LaBEL1, and their heterodimers, were revealed in transgenic Arabidopsis, suggesting that the massive mRNA accumulations of LaKNOX1, LaKNOX2 and LaBEL1 genes during stem bulblet formation could cause the dramatic relative increase of cytokinins and the decline of GAs and IAA. Taken together, a putative model was proposed that LaKNOX1 interacts with LaKNOX2 and LaBEL1 to regulate multiple phytohormones simultaneously for an appropriate hormonal homeostasis, which suggests their potential role in stem bulblet formation in L. ‘Aladdin’.  相似文献   

19.
The main goal of growing plants under various photoperiods is to optimize photosynthesis for using the effect of day length that often acts on plants in combination with biotic and/or abiotic stresses. In this study, Brassica juncea plants were grown under four different day-length regimes, namely., 8 h day/16 h night, 12 h day/12 h night, 16 h day/8 h night, and continuous light, and were infected with a necrotrophic fungus Alternaria brassicicola. The development of necroses on B. juncea leaves was strongly influenced by leaf position and day length. The largest necroses were formed on plants grown under a 16 h day/8 h night photoperiod at 72 h post-inoculation (hpi). The implemented day-length regimes had a great impact on leaf morphology in response to A. brassicicola infection. They also influenced the chlorophyll and carotenoid contents and photosynthesis efficiency. Both the 1st (the oldest) and 3rd infected leaves showed significantly higher minimal fluorescence (F0) compared to the control leaves. Significantly lower values of other investigated chlorophyll a fluorescence parameters, e.g., maximum quantum yield of photosystem II (Fv/Fm) and non-photochemical quenching (NPQ), were observed in both infected leaves compared to the control, especially at 72 hpi. The oldest infected leaf, of approximately 30% of the B. juncea plants, grown under long-day and continuous light conditions showed a ‘green island’ phenotype in the form of a green ring surrounding an area of necrosis at 48 hpi. This phenomenon was also reflected in changes in the chloroplast’s ultrastructure and accelerated senescence (yellowing) in the form of expanding chlorosis. Further research should investigate the mechanism and physiological aspects of ‘green islands’ formation in this pathosystem.  相似文献   

20.
Cholinergic α7 nicotinic receptors encoded by the CHRNA7 gene are ligand-gated ion channels directly related to memory and immunomodulation. Exons 5–7 in CHRNA7 can be duplicated and fused to exons A-E of FAR7a, resulting in a hybrid gene known as CHRFAM7A, unique to humans. Its product, denoted herein as Dupα7, is a truncated subunit where the N-terminal 146 residues of the ligand binding domain of the α7 receptor have been replaced by 27 residues from FAM7. Dupα7 negatively affects the functioning of α7 receptors associated with neurological disorders, including Alzheimer’s diseases and schizophrenia. However, the stoichiometry for the α7 nicotinic receptor containing dupα7 monomers remains unknown. In this work, we developed computational models of all possible combinations of wild-type α7 and dupα7 pentamers and evaluated their stability via atomistic molecular dynamics and coarse-grain simulations. We assessed the effect of dupα7 subunits on the Ca2+ conductance using free energy calculations. We showed that receptors comprising of four or more dupα7 subunits are not stable enough to constitute a functional ion channel. We also showed that models with dupα7/α7 interfaces are more stable and are less detrimental for the ion conductance in comparison to dupα7/dupα7 interfaces. Based on these models, we used protein–protein docking to evaluate how such interfaces would interact with an antagonist, α-bungarotoxin, and amyloid Aβ42. Our findings show that the optimal stoichiometry of dupα7/α7 functional pentamers should be no more than three dupα7 monomers, in favour of a dupα7/α7 interface in comparison to a homodimer dupα7/dupα7 interface. We also showed that receptors bearing dupα7 subunits are less sensitive to Aβ42 effects, which may shed light on the translational gap reported for strategies focused on nicotinic receptors in ‘Alzheimer’s disease research.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号