首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The influence of ammomnium salts of oligomeric Br-N-containing sulphonic acids and some inorganic fire retardants on the physico-mechanical properties, flammability characteristics, and thermooxidative degradation of EPM compositions for insulation of ship cables has been studied. The ternary system consisting of bromosulphaminic acid bromonitrosulphonic acid and antimony trioxide in 6.6 : 3.4 : 4–5 mass ratio has been found to exhibit an addictive effect on the fire retardancy. A correlation between the flammability characteristics and some thermal properties of EPM compositions has also been established. The organic fire retardants of certain concentrations in EPM compositions have been found to exhibit a positive plasticizing performance. © 1993 John Wiley & Sons, Inc.  相似文献   

2.
The flame retardancy and thermal stability of polyhedral oligomeric silsesquioxane (POSS) nanocomposites are reviewed. Results are summarized and compared on the basis of structure–property relationships. Because of the variability of groups attached on POSS, they exhibit different performance in polymer nanocomposites: metal‐containing POSS show good catalytic charring ability; vinyl‐containing and phenyl‐containing POSS promote the strength of char. Improvements in the cone calorimeter (such as reduced peak heat release rate) are advantages of POSS as preceramics for fire retardancy compared with traditional flame retardants, and it will pave the way to the design of inorganic–organic hybrid polymer nanocomposites with enhanced flame retardancy and thermal stability. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
综述了近年来无卤阻燃丙烯腈-丁二烯-苯乙烯三元共聚物(ABS)的最新研究进展,比较了无机、有机磷酸酯、环磷腈类、含Si化合物类及反应共聚型阻燃剂阻燃ABS的阻燃效果。使用复配阻燃剂可以发挥不同组分之间的协同作用,获得更好的阻燃效果,而使用无机纳米阻燃剂可以同时提高阻燃体系的力学性能、热性能、燃烧性能等,获得综合性能优良的复合材料。因此,将无机纳米阻燃剂同常规阻燃剂复配使用,是无卤阻燃ABS的重要研究途径。  相似文献   

4.
In this article, the nanocomposites thermoplastic polyester‐ether elastomer (TPEE) with phosphorous–nitrogen (P–N) flame retardants and montmorillonite (MMT) was prepared by melt blending.The fire resistance of nanocomposites was analyzed by limiting oxygen index (LOI) and vertical burning (UL94) test. The result shows that the flame retardants containing P–N increased the LOI of the material from 17.3 to 27%. However, TPEE containing P–N flame retardants just got UL94 V‐2 ranking, which resulted in the flaming dripping phenomenon. On the other hand, TPEE containing P–N flame retardant and organic‐modified montmorillonite (o‐MMT) achieved UL94 V‐0 rating for the special microstructure. The XRD and TEM morphology has demonstrated that the formation of multi‐ordered structure regarding restricted segmental motions at the organic–inorganic interface and stronger interactions between the clay mineral layers and the polymer chains. The structure was supported by the results of rheological properties and DSC analysis. The thermal degradation and char residue characterization was studied by thermal gravimetric analysis (TGA) and SEM‐EDX measurements, respectively. The TGA and SEM‐EDX have demonstrated that o‐MMT results in the increase of char yield and the formation of the thermal stable carbonaceous char. POLYM. COMPOS., 37:700–708, 2016. © 2014 Society of Plastics Engineers  相似文献   

5.
The reaction‐to‐fire properties of coextruded wood–plastic composites containing different fire retardants (melamine, zinc borate, ammonium polyphosphate, aluminium trihydroxide, natural flake graphite and expandable graphite) in the shell layer have been studied with the cone calorimetry technique. The effect of ammonium polyphosphate in combination with graphite has also been studied with a cone calorimeter test. A coextruded composite manufactured without any fire retardant addition has been used as a reference. The fire properties measured in the cone calorimeter are discussed, including the heat release rate, total heat release, smoke production, specific extinction area, CO yield and mass loss rate. The results show that the introduction of fire retardants in the shell layer of coextruded wood–polypropylene composites has a favourable effect on the fire resistance properties of the composite materials. The reaction‐to‐fire properties have been improved according to the fire classification of construction products based on the Euroclass system. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

6.
综述了有机阻燃剂对硬质聚氨酯泡沫塑料的阻燃改性研究进展。其中有机阻燃剂主要有磷系、氮系、磷/氮复合型等,其中磷/氮复合型的阻燃剂的改性效果要明显高于单一磷系或单一氮系的改性效果。另外,将有机阻燃剂与无机阻燃剂进行复配,利用有机和无机之间的协同作用,能够有效地提高聚氨酯的极限氧指数,降低其发烟量和热释放速率,而且还会在一定程度上影响到聚氨酯泡沫塑料的密度、热导率和压缩强度等性能。并指出复配性阻燃剂将是今后的研究方向。  相似文献   

7.
综述了近年来有关硅系阻燃剂的结构与性能以及阻燃改性等方面的研究进展。介绍了无机硅系阻燃剂 (包括聚合物/层状硅酸盐以及聚合物/二氧化硅纳米复合材料)的热稳定性和阻燃性能。侧重论述了有机硅系阻燃剂(包括本质阻燃聚合物、笼状倍半硅氧烷及其改性聚合物)的热稳定性、阻燃性能和阻燃机理。  相似文献   

8.
In this review, main focus is on the different types of fire retardants, their properties, and pertinent potential. Both inorganic (titania, silica, and zinc oxide) and organic (graphite, graphene, and graphene nanoplatelet) compounds have been discussed as flame inhibitors. Among various sorts of fire retardants, halogen-based flame inhibitors possess outstanding features. Consequently influence of fire retardant on the performance of epoxy composite has been discussed. It was noted that significant enhancement occurs by addition of organic and inorganic fillers in epoxy matrix. However, halogen additives impart better flame resistance to epoxy composite. Toward the end of this review, potential of halogen-containing fire retardant is discussed.  相似文献   

9.
This introduces an organic–inorganic thermosetting hybrid resin system based on unsaturated polyester and polysilazanes. It shows the chemical modification of unsaturated polyester structures by end capping to enable the combination of both components. In general, halogen‐free unsaturated polyesters are not fire‐retardant and have to be equipped with additives. Fillers and intumescent additives are preponderantly used in today's fire‐retardant formulations. In contrast to these fire‐retardants, polysilazanes act as ceramizing agents. Polysilazanes are suitable fire‐retardants for resin transfer molding due to their low viscosity. Both burning behavior and glass transition temperature (Tg) are investigated as important application properties. In contrast to state‐of‐the‐art fire‐retardant formulations polysilazane‐based thermosetting hybrid resins burn with high intensity and fast extinction. Therefore, total heat and smoke emission is decreased. The formation of ceramic structures during burning results in high residual mechanical properties and a low mass loss. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40375.  相似文献   

10.
A series of sol‐gel derived organic–inorganic hybrid materials consisting of organic poly(methyl methacrylate) (PMMA) and inorganic titania (TiO2) were successfully synthesized by using 2‐hydroxyethyl methacrylate (HEMA) as coupling agent. In this work, HEMA is first copolymerized with methyl methacrylate monomer at specific feeding ratios by using benzoyl peroxide (BPO) as initiator. Subsequently, the as‐prepared copolymer (i.e., sol‐gel precursor) is then cohydrolyzed with various contents of titanium butoxide to afford chemical bondings to the forming titania networks to give a series of hybrid materials. Transparent organic–inorganic hybrid materials with different contents of titania are always achieved. Effects of the material composition on the thermal stability, optical properties, and morphology of neat copolymer and a series of hybrid materials, in the form of both coating and free‐standing film, are also studied by differential scanning calorimetry, thermogravimetric analysis, UV–Vis transmission spectra, refractometer, and atomic force microscopy, respectively. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 94: 400–405, 2004  相似文献   

11.
Copolymers with different weight ratios of AA/PAS (acrylic acid/poly(DL-aspartic acid)) were synthesized and blended with sol-gel precursors to prepare water-soluble PAA–PAS/SiO2 inorganic/organic hybrid materials. The PAS polymer or its copolymer in PAA–PAS/SiO2 formed hydrogen bonds with SiO2 and the amorphous structure of the hybrid material varied with the weight ratio of PAA. The hybrid materials exhibited enhanced thermal resistance over the copolymer alone. All hybrid materials were water-soluble and relatively insoluble in organic solvents.  相似文献   

12.
The influence of two novel aryl phosphate mixtures on fire retardancy and the thermal stability of epoxy resin were studied. Combustion behavior, decomposition pathway, and thermal and thermo‐oxidative degradation of the epoxy resin were examined by using the limiting oxygen index, vertical burning test (UL‐94), cone calorimeter test, thermogravimetric analysis, and thermogravimetry coupled with Fourier‐transform infrared spectroscopy. The morphology of the residues from the degradation of flame‐retarded epoxy resins was investigated by using scanning electron microscopy. Data from the cone calorimeter test demonstrated that the total heat evolved, heat release rate, and peak heat release rate decreased significantly when the epoxy resin contained these retardants. Moreover, a 20 wt% of both phosphate mixtures in the epoxy resin allowed for a satisfactory oxygen index (30–33%) and for UL‐94 V2 to be achieved. The condensed‐phase and gas‐phase actions of these aryl phosphate flame‐retardants are proposed as the mode of flame‐retardancy in epoxy resins. J. VINYL ADDIT. TECHNOL., 23:142–151, 2017. © 2015 Society of Plastics Engineers  相似文献   

13.
综述了近5年来的无卤阻燃聚酯复合材料的研究进展。讨论了有机阻燃剂(如磷酸盐、磷酸酯等)、无机阻燃剂(如红磷、蒙脱土等)和有机无机配合阻燃体系(如氢氧化铝/聚磷酸铵/可膨胀石墨等)等几大类阻燃体系阻燃聚酯后复合材料的力学性能、热稳定性、相容性、抑烟性以及不同添加量下热释放速率的变化,并对高效、环境友好的无卤阻燃聚酯复合材料的前景进行了展望。  相似文献   

14.
In this work, we co‐formulated an oil‐borne copper naphthenate/permethrin wood preservative system with synthetic polymer‐based fire‐retardant additives prior to the impregnation of Pinus radiata sapwood. We evaluated what effect, if any, the preservative had upon the fire performance properties of the fire retardants and whether the fire retardants impacted on the fungicidal and termiticidal efficacy of the preservative. The fire retardants included halogenated and phosphorus‐based systems. A mass loss calorimeter, in conjunction with a thermopile, was used to measure the time to ignition and the peak heat release rate (PHRR) from which the fire performance index (FPI) was determined. The preservative properties were evaluated using termite and soil‐block decay bioassays. In summary, we found that the rate of fire growth was reduced when the fire retardants were used in combination with the wood preservative. We also found that the PHRR was a better determinant of fire performance than the FPI. The performance of the wood preservative was enhanced against fungal decay and termite attack when used in combination with the fire retardants. The fire retardants also demonstrated some wood preservative properties of their own. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

15.
Silica-supported organic–inorganic polymer hybrids were synthesized via in situ sol–gel condensation of silica monomer in the presence of oxazoline copolymer. A stable copolymer of 2-ethyl-2-oxaoline and 2-isopropyl-2-oxazoline was prepared using methyl p-tosylate as the living polymerization initiator with molecular mass of 4200 g mol−1. Lower critical solution temperature (LCST) of this copolymer was thermally found to be at 77 °C. The copolymer was mixed with tetramethoxysilane (TMOS) in different amounts (0.039:1 to 0.158:1 weight ratios) via in situ sol–gel condensation to produce organic–inorganic hybrids including thermosensitive copolymer. Tuning of these solid-supported materials showed sharp phase transitions changes in a temperature range from 42 to 58 °C, which was confirmed using differential scanning calorimetry. Enthalpy of the phase transition was also calculated using the area above the endothermic peak. A typical concave curve was obtained for LCST-type phase diagram suggesting the dependence of phase transition temperature on the concentration of the copolymer in the hybrid. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 48163.  相似文献   

16.
有机聚合物/无机化合物纳米复合阻燃材料研究进展   总被引:2,自引:0,他引:2  
综述了有机聚合物/无机化合物纳米复合阻燃材料的研究和应用现状。阐述的纳米复合阻燃材料包括有机聚合物/层状硅酸盐纳米复合材料、有机聚合物/碳纳米管纳米复合材料、有机聚合物/二氧化硅纳米复合材料、有机聚合物/石墨纳米复合材料等。与传统无机阻燃剂填充阻燃材料相比,这类新型纳米复合阻燃材料的填料与基体的亲合性、基体的物理力学性能和阻燃性能等均得到改善。  相似文献   

17.
无机阻燃剂在增塑聚氯乙烯中的应用   总被引:4,自引:0,他引:4  
详细介绍了无机阻燃剂的阻燃机理,研究了各种无机阻燃剂对增塑聚氯乙烯性能的影响,同时发现了它们在阻燃方面的协同效应作用。  相似文献   

18.
The incorporation of two brominated compounds/antimony trioxide blends into a PP–PE copolymer were studied. Both brominated trimethylphenyl indane (FR 1808) and poly(pentabromobenzyl acrylate) (FR 1025) confer good flame retardancy at 40% loading. A comparison was made with the incorporation of magnesium hydroxide at higher loadings (up to 64%) in the same copolymer. The mineral filler improves both fire resistance and stiffness of the copolymer, nevertheless the high loading causes a dramatic decrease in impact resistance. Moreover, the necessary surface treatment of the filler significantly lowers the maximal tensile strength. In order to maximize both fire resistance and mechanical properties, we combined each brominated flame-retardant system (20% in weight) with magnesium hydroxide or talc (20% in weight). Talc is used as reference. These composites show interesting fire-retardant properties in comparison with the copolymers containing only 40% of the brominated flame-retardant systems. In addition, the mechanical properties are on the whole improved. © 1997 John Wiley & Sons, Ltd.  相似文献   

19.
The application of acrylonitrile-butadiene-styrene (ABS) copolymer as construction material is largely restricted by its inherent flammability and the release of a great amount of smoke and toxic gases during combustion. To address this issue, the combination of conventional flame retardants and nanoadditives was proven to be a promising way. Herein, both intumescent flame retardants (IFR) and layered nanofillers, that is, graphene and layered double hydroxide were added into ABS resin. These nanofillers exhibited superior dispersion in the ABS matrix. Thermal and fire behaviors of ABS resin were investigated by thermogravimetry analysis, UL-94 vertical burning test, limiting oxygen index test, and cone calorimetry. The ABS composites containing IFR and layered nanofillers presented remarkable decline in total heat release, peak heat release rate, and volume of toxic effluents released in the burning process compared with those of neat ABS, indicating the significantly improved fire safety of ABS. Moreover, introducing layered nanofillers could further enhance the heat stability and fire safety of the flame-retardant ABS composites, indicating the presence of synergistic effect between IFR and layered nanofillers. The scanning electron microscopy and Raman spectroscopy results confirmed the formation of compact and dense intumescent chars, which could obstruct the spread of heat and mass, and thus improved the heat stability and flame retardancy of ABS resin. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 48220.  相似文献   

20.
无机磷系阻燃剂包括红磷(微胶囊化红磷)、聚磷酸铵、磷酸盐(如磷酸氢二铵、磷酸二氢铵、磷酸铵等)。介绍了红磷、聚磷酸铵、磷酸盐等无机阻燃剂的性质、生产过程、产品标准和用途等。概括了无机磷系阻燃剂生产、性能和阻燃应用研究情况。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号