首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
In the most extensive examination to date of the relationship between the pausing of reverse transcrip-tase (RT) and RNA secondary structures, pause events were found to be correlated to inverted repeats both ahead of, and behind the catalytic site in vitro. In addition pausing events were strongly associated with polyadenosine sequences and to a lesser degree diadenosines and monoadenosine residues. Pausing was also inversely proportional to the potential bond strength between the nascent strand and the template at the point of termination, for both mono and dinucleotides. A run of five adenosine and four uridine residues caused most pausing on the HIV-1 template, a region which is the site of much sequence heterogeneity in HIV-1. We propose that homopolyadenosine tracts can act as termination signals for RT in the context of inverted repeats as they do for certain RNA polymerases.  相似文献   

15.
16.
Ethylene oxide, a direct-acting mutagen and carcinogen, produces 3-hydroxyethyldeoxyuridine (3-HE-dU) after initial alkylation at N3 of dC, followed by rapid hydrolytic deamination. The significance of formation of 3-HE-dU in DNA was investigated by in vitro DNA replication of 3-HE-dU. A 55-nucleotide DNA template, containing 3-HE-dU at a single site, was constructed. DNA products, synthesized on the site-modified template, were analyzed and mutagenic bypass at 3-HE-dU estimated. The 3-HE-dU lesion blocked DNA replication by the Klenow fragment of Escherichia coli polymerase I (Kf Pol I) and bacteriophage T7 polymerase (T7 Pol) 3' to 3-HE-dU and after incorporating a nucleotide opposite 3-HE-dU. DNA synthesis past 3-HE-dU was negligible (< 3%). Substitution of Kf Pol I (exo-) and T7 Pol (exo-), polymerases lacking 3'-->5' exonuclease proofreading activity, for Kf Pol I and T7 Pol, respectively, facilitated DNA synthesis past 3-HE-dU. The bypass synthesis by Kf Pol I (exo-) was 60% and 90% by T7 Pol (exo-). These results suggest that the 3-HE-dU lesion could be bypassed, but that the extension at 3-HE-dU is rate-limiting. In the absence of proofreading, the nucleotide incorporated opposite 3-HE-dU is not excised and remains in position long enough for extension to occur. During post-lesion synthesis, both dA and dT were incorporated opposite 3-HE-dU. Since 3-HE-dU is derived from dC alkylation by ethylene oxide, incorporation of dA and dT opposite 3-HE-dU implicates this lesion in G.C-->A.T and G.C-->T.A mutagenesis.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号