首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 33 毫秒
1.
The operating point of a photovoltaic generator that is connected to a load is determined by the intersection point of its characteristic curves. In general, this point is not the same as the generator’s maximum power point. This difference means losses in the system performance. DC/DC converters together with maximum power point tracking systems (MPPT) are used to avoid these losses. Different algorithms have been proposed for maximum power point tracking. Nevertheless, the choice of the configuration of the right converter has not been studied so widely, although this choice, as demonstrated in this work, has an important influence in the optimum performance of the photovoltaic system. In this article, we conduct a study of the three basic topologies of DC/DC converters with resistive load connected to photovoltaic modules. This article demonstrates that there is a limitation in the system’s performance according to the type of converter used. Two fundamental conclusions are derived from this study: (1) the buck–boost DC/DC converter topology is the only one which allows the follow-up of the PV module maximum power point regardless of temperature, irradiance and connected load and (2) the connection of a buck–boost DC/DC converter in a photovoltaic facility to the panel output could be a good practice to improve performance.  相似文献   

2.
In this paper, a simple control strategy for an optimal extraction of output power from grid connected variable speed wind energy conversion system (WECS) is presented. The system consists of a variable speed wind turbine coupled to a permanent magnet synchronous generator (PMSG) through a gear box, a diode bridge rectifier, a dc-to-dc boost converter and a current controlled voltage source inverter. The maximum power point tracker (MPPT) extracts maximum power from the wind turbine from cut-in to rated wind velocity by sensing only dc link power. The MPPT step and search algorithm in addition to the DC–DC and DC–AC converters PWM controllers are simulated using MATLAB-SIMULINK software. The obtained simulation results show that the objectives of extracting maximum power from the wind and delivering it correctly to the grid are reached.  相似文献   

3.
针对目前中小型风力发电系统发电效率低,提出了一种新型拓扑结构,即机侧采用三相PWM整流器,网侧采用单相PWM逆变器。在对永磁同步发电机数学模型和风力机最佳输出功率进行分析的基础上,采用转子磁链定向控制技术,实现对发电机输出的有功功率的控制,进而实现对风力发电机最大功率的跟踪控制;同时,在单相系统中引入"虚拟电路",使网侧单相变流电路参数可以转化到旋转坐标系下,实现无静差控制。通过仿真试验验证了控制策略的可行性。  相似文献   

4.
This paper concentrates on the output power smoothing and the grid dynamic response enhancement of a grid‐interactive MW‐class permanent magnet synchronous generator‐based wind energy conversion system (WECS). A simple fuzzy controller method is applied to improve the overall performance of the WECS. The proposed method can retrieve the storing kinetic energy from the inertia of a wind turbine, perfectly. As a result, it can ensure a proficient power smoothing of the variable speed WECS. On the other hand, the grid side inverter is controlled by the fuzzy controller. This approach can reduce the fluctuation of DC link voltage and can deliver a smooth power to the power grid. The proposed method is compared with two other methods such as the maximum power point tracking control method and the without fuzzy controller method. A simple shunt circuit also includes in the DC link circuit. Therefore, during the system fault condition, the WECS can perform a stable operation. Effectiveness of the proposed method is verified by numerical simulations. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
Babak Badrzadeh 《风能》2011,14(3):425-448
This paper investigates the possibilities of viable power electronics converters, semiconductor switching devices and electric machines for 10 MW variable‐speed wind turbine generators. The maximum rated power of existing wind turbine configurations is in the range of 6 MW. The proposed alternatives are compared against several technical and economical factors, and their advantages over the present wind turbines are highlighted. A comprehensive performance comparison of modern power semiconductor devices, their electrical characteristics and the key differentiators among them are presented. The power electronics converters considered include all commercially available multilevel voltage source and current source converters as well as the opportunities offered by power electronics building block‐based design. The factors used for the comparison include the converter power range, capacitor voltage balancing, common mode voltage and current, electromagnetic interference emissions, fault ride‐through capability, reliability, footprint, harmonic performance, efficiency and losses, component count, risk of torsional vibration by the harmonics and inter‐harmonics, complexity, ease of back‐to‐back operation and filtering requirements. For the electric machines, this study concentrates on high‐temperature superconducting machines, multi‐phase induction machines and permanent magnet synchronous machines. These machines are compared against existing wind generator technologies in terms of their power range, torque density, efficiency, fault ride‐through capability, reliability, footprint, harmonic performance, ease of fault detection, excitation control, noise and vibration signature, oscillation damping, gearbox requirement, cost and the size of the associated converter. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
In this study, a maximum power point tracking DC–DC quadratic boost converter for high conversion ratio required applications is proposed. The proposed system consists of a quadratic boost converter with high step-up ratio and fuzzy logic based maximum power point tracking controller. The fuzzy logic based maximum power point tracking algorithm is used to generate the converter reference signal, and the change in PV power and the change in PV voltage are selected as fuzzy variables. Determined membership functions and fuzzy rules which are design to track the maximum power point of the PV system generates the output signal of the fuzzy logic controller's output. It is seen from MATLAB/Simulink simulation and experimental results that the quadratic boost converter provides high step-up function with robustness and stability. In addition, this process is achieved with low duty cycle ratio when compared to the traditional boost converter. Furthermore, simulation and experimental results have validated that the proposed system has fast response, and it is suitable for rapidly changing atmospheric conditions. The steady state maximum power point tracking efficiency of the proposed system is obtained as 99.10%. Besides, the output power oscillation of the converter, which is a major problem of the maximum power point trackers, is also reduced.  相似文献   

7.
1MW直驱风力发电系统建模与仿真研究   总被引:1,自引:0,他引:1  
建立了1 MW直驱风力发电系统电磁暂态仿真模型,在PSCAD/EMTDC环境下采用电压空间矢量脉冲宽度调制技术(SVPWM)真实地反映变流器的动态开关过程和谐波特性,实现了直驱风力发电系统的机侧最大风能跟踪以及永磁发电机定子电流的解耦控制和网侧直流母线电压稳定的控制。文章还对网侧变流器的软件锁相环(SPLL)进行了优化设计,使之能够快速、准确地跟踪电网基波正序电压,有助于改善网侧变流器在电网不对称故障期间的动态控制性能。  相似文献   

8.
Advanced experimentation with wind energy conversion systems is described. The real time multivariable control of a wind turbine is designed for investigation of theoretical concepts and their physical implementation. The control system includes a speed controller and a disturbance estimator for enhanced robustness of the control system. In order to provide students with deeper understanding of wind energy and energy extraction, a maximum power point tracking algorithm is developed and integrated into the control system. The multivariable control system is implemented in a small wind turbine laboratory system. A power electronic interface is based on two DC–DC converters: a buck converter for control of the speed and a boost converter controlling the load voltage. Experimental results demonstrate effectiveness of the multivariable control system for a wind turbine providing maximum power extraction. The experiment can be reconfigured for teaching various control concepts to both undergraduate and graduate students.  相似文献   

9.
This paper explores the use of an interior permanent-magnet synchronous machine (IPM) as a source of controlled DC power. A three-phase diode rectifier converts the generated AC power into DC, which is further processed by a buck or boost DC-DC converter with a pulse-width modulation voltage controller for load voltage and output power regulation. The modeling and analysis of the generator system set forth are confirmed to accurately predict the generator characteristics by experimental results derived from a 2 hp interior permanent-magnet generator controlled separately by a buck and a boost DC-DC converter  相似文献   

10.
This paper presents a low power wind energy conversion system (WECS) based on a permanent magnet synchronous generator and a high power factor (PF) rectifier. To achieve a high PF at the generator side, a power processing scheme based on a diode rectifier and a boost DC–DC converter working in discontinuous conduction mode is proposed. The proposed generator control structure is based on three cascaded control loops that regulate the generator current, the turbine speed and the amount of power that is extracted from the wind, respectively, following the turbine aerodynamics and the actual wind speed. The analysis and design of both the current and the speed loops have been carried out taking into consideration the electrical and mechanical characteristics of the WECS, as well as the turbine aerodynamics. The power loop is not a linear one, but a maximum power point tracking algorithm, based on the Perturb and Observe technique, from which is obtained the reference signal for the speed loop. Finally, to avoid the need of mechanical sensors, a linear Kalman Filter has been chosen to estimate the generator speed. Simulation and experimental results on a 2‐kW prototype are shown to validate the concept. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

11.
To achieve maximum power point tracking (MPPT) for wind power generation systems, the rotational speed of wind turbines should be adjusted in real time according to wind speed. In this paper, a Wilcoxon radial basis function network (WRBFN) with hill-climb searching (HCS) MPPT strategy is proposed for a permanent magnet synchronous generator (PMSG) with a variable-speed wind turbine. A high-performance online training WRBFN using a back-propagation learning algorithm with modified particle swarm optimization (MPSO) regulating controller is designed for a PMSG. The MPSO is adopted in this study to adapt to the learning rates in the back-propagation process of the WRBFN to improve the learning capability. The MPPT strategy locates the system operation points along the maximum power curves based on the dc-link voltage of the inverter, thus avoiding the generator speed detection.  相似文献   

12.
13.
This paper presents a system using an energy capacitor system (ECS) to smoothen the output power fluctuation of a variable-speed wind farm. The variable-speed wind turbine driving a permanent-magnet synchronous generator is considered to be connected to the ac network through a fully controlled frequency converter. The detailed modeling and control strategy of the frequency converter as well as variable-speed operation of a wind turbine generator system are demonstrated. Afterward, a suitable and economical topology of ECS composed of a current-controlled voltage-source inverter, dc–dc buck/boost converter, and an electric double layer capacitor (EDLC) bank is presented, including their control strategies. Exponential moving average is used to generate the real input power reference of ECS. Another novel feature of this paper is the incorporation of a fuzzy-logic-controlled reference signal adjuster in the control of the dc–dc buck/boost converter, in which the stored energy of the EDLC bank is utilized in an efficient way. Due to this controller, the energy storage capacity of the EDLC bank can be reduced in size, thus resulting in reduction of the overall cost of the ECS unit as well as decrease in irrepressible operations during high and low energy levels of the EDLC bank. Finally, extensive simulation results are presented that validate the effectiveness of the proposed system to smoothen the output power fluctuation of the variable-speed wind farm.   相似文献   

14.
The current paper talks about the variable speed wind turbine generation system (WTGS). So, the WTGS is equipped with a doubly-fed induction generator (DFIG) and two bidirectional converters in the rotor open circuit. A vector control (VC) of the rotor side converter (RSC) offers independent regulation of the stator active and reactive power and the optimal rotational speed tracking in the power maximization operating mode. A VC scheme for the grid-side converter (GSC) allows an independent regulation of the active and reactive power to exchange with the grid and sinusoidal supply currents and keeps the DC-link voltage constant. A fuzzy inference system (FIS) is adopted as an alternative of the conventional proportional and integral (PI) controller to reject some uncertainties or disturbance. The performances have been verified using the Matlab/Simulink software.  相似文献   

15.
This paper focuses on maximum wind power extraction for a wind energy conversion system composed of a wind turbine, a squirrel-cage induction generator, and a matrix converter (MC). At a given wind velocity, the mechanical power available from a wind turbine is a function of its shaft speed. In order to track maximum power, the MC adjusts the induction generator terminal frequency, and thus, the turbine shaft speed. The MC also adjusts the reactive power transfer at the grid interface toward voltage regulation or power factor correction. A maximum power point tracking (MPPT) algorithm is included in the control system. Conclusions about the effectiveness of the proposed scheme are supported by analysis and simulation results.   相似文献   

16.
This paper presents a peak current mode control scheme of a boost rectifier with low distortion of the input current for wind power systems based on permanent magnet synchronous generators with variable speed operation. The three-phase boost rectifier is operated in discontinuous conduction mode (DCM), and power factor correction techniques are applied. It is shown that the DCM operation significantly reduces the total harmonic distortion of the currents in the permanent magnet synchronous generator, increasing the power factor of the system, so that the vibrations and mechanical stress of the generator are minimized. The characteristics of the DCM boost rectifier are studied considering: (1) the series resistance of the inductors; (2) the modeling and adjustment of peak current mode control yielding a stable loop; (3) the design of an input filter that reduces the switching noise in the currents of the generator.  相似文献   

17.
A well engineered renewable remote energy system, utilizing the principal of Maximum Power Point Tracking (MPPT) can improve cost effectiveness, has a higher reliability and can improve the quality of life in remote areas. A high-efficient power electronic converter, for converting the output voltage of a solar panel, or wind generator, to the required DC battery bus voltage has been realized. The converter is controlled to track the maximum power point of the input source under varying input and output parameters. Maximum power point tracking for relative small systems is achieved by maximization of the output current in a battery charging regulator, using an optimized hill-climbing, inexpensive microprocessor based algorithm. Through practical field measurements it is shown that a minimum input source saving of between 15 to 25% on 3–5 kWh/day systems are easily be achieved. A total cost saving of at least 10–15% on the capital cost of these systems are achieveable for relative small rating Remote Area Power Supply (RAPS) systems. The advantages at large temperature variations and high power rated systems are much higher. Other advantages include optimal sizing and system monitor and control.  相似文献   

18.
Due to the growing of the power electronics, especial attention has been given to the use of new generation of power converters, AC/AC matrix converter to which provide a direct power converter AC/AC, bi-directional power flow, almost sinusoidal input and output waveform. In this paper, we present the performance study of a variable-speed wind turbine based on doubly fed induction generator fed by matrix converter using the maximum power point tracking method to extract the maximum power available. The whole system is presented in d-q-synchronous reference frame. The control scheme is tested and the performances are evaluated by simulation results. The simulation results obtained under MatLab/Simulink show the effectiveness and validity of the considered control.  相似文献   

19.
以永磁同步风力发电系统为研究对象,分析了永磁同步风力发电系统的风速、风力机、Boost电路和逆变器模型,研究了风力发电系统的最大功率跟踪控制和并网逆变器控制,在Boost升压电路中利用转速、整流直流电压和导通比三者之间的传递关系制定了最大功率跟踪控制策略,通过简易的PQ解耦幅相控制实现系统并网,提高了系统输出功率因数,恒定了直流母线电压,并基于Matlab/Simulink搭建仿真模型验证了该系统控制策略的有效性。  相似文献   

20.
This paper is on variable‐speed wind turbines with permanent magnet synchronous generator (PMSG). Three different drive train mass models and three different topologies for the power‐electronic converters are considered. The three different topologies considered are respectively a matrix, a two‐level and a multilevel converter. A novel control strategy, based on fractional‐order controllers, is proposed for the wind turbines. Simulation results are presented to illustrate the behaviour of the wind turbines during a converter control malfunction, considering the fractional‐order controllers. Finally, conclusions are duly drawn. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号