共查询到19条相似文献,搜索用时 88 毫秒
1.
2.
3.
4.
利用溶胶-凝胶法制备了掺杂1.5%锰离子的ZnAl2O4晶体,通过X射线衍射仪(XRD)、扫描电镜(SEM)以及荧光光谱仪对样品的结构和光致发光(PL)性能进行测试分析。结果表明,随着烧结温度的升高,晶体的X射线衍射峰逐渐增强,晶体结构得以改善。当受到427nm的激光源激发时,晶体会发射出峰值为512nm的绿光和680nm的红光。绿光是由Mn2+的4 T1→6 A1跃迁引起的,而红光是源于4价锰离子。在还原气氛下,烧结温度由600℃上升到900℃时,红光发射峰强度降低并继而消失,而绿光发射峰的强度逐渐增强。 相似文献
5.
采用溶胶-凝胶法和微波辐射法制备了Mg2SiO4Mn2+红色发光材料。研究了以Mg2SiO4为基质,在掺杂Mn2+的情况下,微波合成时间和Mn2+的掺杂浓度对发光性能的影响。选择最佳微波合成时间和Mn2+的掺杂浓度,制备了在410nm激发下,发光中心位于690nm的红色发光材料。 相似文献
6.
溶胶-凝胶法合成Sr2SiO4:Sm3+及其发光性能 总被引:1,自引:0,他引:1
采用溶胶-凝胶法合成了Sr<,2>SiO<,4>:Sm<,3+>红色荧光粉,用XRD、SEM、PL对样品进行了结构、型貌及发光性能表征.结果表明,所得样品为单斜晶系结构,呈粒径为0.1~0.3μm、1μm左右长的纤维状小颗粒;在波长402nm的紫外激发下,样品发射光谱由位于红橙区的3个主要荧光发射峰组成,峰值分别位于568,605nm和651nm,对应了Sm<'3+>的<'4>G<,5/2>→<'6>H<,5/2>,<'4>G<,5/2>→<'6>H<,7/2>和<'4>G<,5/2>→<'6>H<,9/2>特征跃迁发射,605nm的发射最强,是一种适用于白光LED的红色荧光粉. 相似文献
7.
以正硅酸乙酯、钛酸正丁酯和聚乙二醇等为主要原料,采用溶胶-凝胶法成功合成了多孔SiO2-TiO2系块状材料。500℃焙烧2h后材料呈现非晶态结构。引入较多钛量时,使材料的孔径分布变窄、平均孔径下降,但增加了比表面积。在80℃热水中浸泡72小时以后,吸附一脱附曲线的类型和形状几乎没有变化;随着Ti含量的增加,比表面积和孔容积的变化率减小。多孔材料在98℃的20%硫酸溶液中重量损失率随Ti含量变化不大,Ti引入并不能提高材料在酸液中的耐蚀性;但引入Ti使多孔材料在95℃NaOH碱液中的耐蚀性明显改善。 相似文献
8.
采用柠檬酸溶胶-凝胶法合成了ZnGa2O4∶Mn2 粉末.利用XRD、SEM、IR、EPR和PL光谱手段,表征了样品的结构、形貌和发光性能.结果表明,柠檬酸溶胶-凝胶法制备的ZnGa2O4∶Mn2 颗粒均匀,在650℃热处理7h即可得到结晶性好、粒径约为50nm的粉末;掺杂的锰是 2价的,不仅存在于四面体间隙中,也存在于八面体间隙中;当Mn2 的掺杂浓度为0.3%(原子分数),退火温度为800℃时,样品的绿色发光强度最大. 相似文献
9.
10.
11.
采用高温固相法合成了绿色荧光粉Zn2Ca(PO4)2:Tb3+,测定了该荧光粉的XRD图谱、激发光谱及发射光谱。XRD图谱表明在高温还原气氛下合成了纯相的荧光粉Zn2Ca(PO4)2:Tb3+。该荧光粉的激发谱位于340~400nm。在紫外激发下主要发射峰位于490、544、584、622nm,对应于Tb3+的5D4→7F6、5D4→7F5、5D4→7F4、5D4→7F3的特征发射。考察了Tb3+的掺杂浓度对样品发光效率的影响,分析了Tb3+的544nm发射的自身浓度猝灭机理并探讨了敏化剂Ce3+离子的加入对荧光粉发光的影响。此绿色荧光粉Zn2Ca(PO4)2:Tb3+是一种很有潜力的适于UVLED管芯激发的发光粉。 相似文献
12.
Zn4B6O13:Eu3+的合成与光致发光 总被引:1,自引:0,他引:1
用高温固相扩散方法首次合成了由Eu^3 离子激活的ZnB6O12红色光致发光材料,用XRD分析了样品结构,结果表明:Zn4B6O13:Eu^3 为立方晶系,晶胞参数α=0.7471nm,V=0.4170nm^3,研究了Eu3 在Zn4B6O13中的强激发带位于394nm,主要发射峰位于610nm归属Eu^3 离子的5D0→7F2电偶极跃迁发射,根据发射光谱计算色坐标为x=0.281,y=0.619,SEM摄取了样品的清晰晶体外貌,平均颗粒度为15um左右,加入一定量助溶剂使发射光谱的相对发射强度增加了2.32-3.86倍。 相似文献
13.
14.
15.
本论文基于硅铬共掺杂, 合成得到了一种尖晶石长余辉材料Zn1+xGa2-2xSixO4:Cr 3+。实验采用高温固相法, 按照设计的化学计量比精确称量ZnO、Ga2O3、SiO2和Cr2O3等原料, 制备了一系列硅铬共掺杂的镓酸锌尖晶石长余辉材料, 其化学式为Zn1+xGa2-2xSixO4:Cr 3+(x=0, 0.1, 0.15, 0.2, 0.5, 1)。实验结果表明: 采用硅铬共掺杂方式后, 引入合适浓度的硅离子可有效改善余辉性能。当x=0.2时, 样品余辉强度最佳, 相比ZnGa2O4:Cr 3+增强了3倍, 并且余辉持续时间长达24 h。进一步的陷阱分布分析表明, 在ZnGa2O4基质基础上引入硅掺杂, 可有效调控不同陷阱深度的分布。即在丰富的反位缺陷基础上, 硅的共掺杂可增加不等价替换缺陷和填隙缺陷等, 并可调控禁带宽度及缺陷形成, 从而实现改善余辉性能的目的。 相似文献
16.
17.
18.
采用微波辅助水热法一步合成尺寸约为5 μm的Zn2GeO4微米球。实验研究了微波水热的反应温度、反应时间、乙酸锌与氧化锗的摩尔比等因素对合成Zn2GeO4微米球的影响。采用FE-SEM、TEM、XRD和UV-Vis对合成的微米球进行表征。结果表明, 当乙酸锌:氧化锗为6:2, 微波辐射温度为170℃, 反应时间10 min, 尿素用量3.604 g, 制备的Zn2GeO4微米球具有良好的光催化效果。实验测试Zn2GeO4微米球比表面积为13 m2/g, 在紫外光辐射下, 在甲醇体系中的光解水产氢速率可达到3.76 mmol/(h·g)。该方法缩短反应时间, 增强了光催化活性。 相似文献
19.
锌锰掺杂的Fe3O4纳米颗粒具有优异的磁性能, 在生物医药领域有广泛的应用前景。磁性纳米颗粒的尺寸与其磁学性质以及生物磁性应用密切相关。因此, 为了适应不同生物应用对尺寸的需求, 研究其尺寸调控具有重要的意义。在本研究中, 我们采用高温热分解法, 通过加入还原剂1,2-十六烷二醇, 改变金属前躯体和回流时间成功制备了尺寸在5~20 nm的锌锰掺杂Fe3O4纳米颗粒。研究发现:强还原剂1,2-十六烷二醇的加入有利于合成小尺寸的纳米颗粒, 而以金属氯化物作为金属前躯体和延长回流时间可以进一步合成更大尺寸的纳米颗粒; 纳米颗粒的饱和磁化强度随着尺寸的增大而增大。 相似文献