首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lignin‐based slurry fuels are a potential alternative to fossil fuels in kraft pulp mills. Lignogels — mixtures of lignin, fuel oil, water and surfactant — are non‐Newtonian fluids, with shear‐thinning and thixotropic behaviour. Their mixing was investigated in tanks with volumes of 3 and 30 L. An A310 hydrofoil impeller was used in all experiments. Results were compared with measurements in Newtonian fluids, used to characterize the impeller over a broad range of Reynolds numbers (1–500 000). An aqueous CMC solution was also used for characterization of the impeller and estimation of the Metzner‐Otto constant. Results in the transition region were corrected by introduction of two empirical parameters.  相似文献   

2.
Self‐similar mixing structures, a novel feature of chaotic mixing, were generated in this study as precursor to an array of mixing microstructures, such as nested layers, elongated fibrils, droplets and their combinations in the blending of two immiscible polymers, polypropylene (PP) and polyamide‐6 (PA6). Simulations based on Newtonian flow model were used to compute Poincaré maps and stretching distribution as the tools for investigation of the effect of shear gap and chaotic mixing parameter, such as angular displacement per period (θ) of rotors, on the degree of mixing and morphology development in a batch chaotic mixing device. It was found that a value of θ = 1440° provided the conditions for fastest conversion of the PP‐phase into droplets for the same total strain. A 25% reduction in shear gap from 0.0127 m to 0.0095 m gave rise to much more uniform mixing of the components and led to faster conversion of the PP‐phase into droplets for the same value of θ and the same total strain. A very large fraction (>90%) of the droplets generated fell below the equilibrium size and were found to be much smaller than those produced by twin‐screw extrusion method. Polym. Eng. Sci. 44:407–422, 2004. © 2004 Society of Plastics Engineers.  相似文献   

3.
Mixing times for inelastic shear‐thinning fluids in stirred tanks have been experimentally investigated using a combination of two off‐centred impellers operating in both co‐ and counter‐rotating modes. A colour‐discolouration technique based on fast acid‐base reaction was used for the determination of the mixing times as well as to reveal the possible presence of caverns and dead regions. A statistical plan of experiments allowed determining the effects of the impeller position, the rotational speed, the flow behaviour index, the impeller type and their mutual interactions. A stronger influence of the impeller position on mixing times was observed for both rotating modes with fluids exhibiting pronounced shear‐thinning. It was also found that segregated regions could be readily destroyed by dual off‐centred impellers as compared with the single centred impeller configuration. Mixed flow impellers were shown to be less efficient in terms of mixing times than radial flow impellers. Results obtained under the best operating conditions were compared to steady stirring experiments showing the potential and drawbacks of the proposed scenarios.  相似文献   

4.
The purpose of this note is to present a new model that is able to predict an effective shear rate in a vessel equipped with helical ribbon agitators, when mixing shear‐thinning fluids. This model is based on well established results obtained for non‐Newtonian flow in cylindrical ducts.  相似文献   

5.
The turbulent gas‐liquid flow field in an industrial 100‐m3 stirred tank was calculated by using computational fluid dynamics based on the finite‐volume method. Turbulent effects were modeled with the shear stress transport model, and gas‐liquid bubbly flow was modeled with the Eulerian‐Eulerian approach using the Grace correlation for the drag force interphase momentum transfer. The relative motion between the rotating impeller and the stationary baffled tank was considered by using a multiple frames of reference algorithm. The effects of Rushton and pitched‐blade impeller design parameters such as blade geometry, location, and pumping direction on the mixing performance were investigated. It was found that a combination of Rushton turbines with up‐pumping pitched‐blade turbines provides the best mixing performance in terms of gas holdup and interfacial area density. The approach outlined in this work is useful for performance optimization of biotechnology reactors, as typically found in fermentation processes.  相似文献   

6.
Mixing of non‐Newtonian fluids with axial and radial flow impellers is prone to a significant extent of nonideal flows (e.g., dead zones and channelling) within the stirred reactors. To enhance the performance of the continuous‐flow mixing of pseudoplastic fluids with yield stress, close‐clearance impellers were utilised in this study. We explored the effects of various parameters such as the type of close‐clearance impeller (i.e., the double helical ribbon (DHR) and anchor impellers), impeller speed (25–500 rpm), impeller pumping direction, fluid rheology (0.5–1.5% xanthan gum solution), fluid flow rate (3.20–14.17 L min?1) and the locations of outlet (configurations: top inlet–top outlet, top inlet–bottom outlet) on the dynamic performance of the mixing vessel. The performance of the DHR impeller was then compared to the performance of various types of impellers such as axial‐flow (Lightnin A320) and radial‐flow (Scaba 6SRGT) impellers. The dynamic tests showed that the DHR impeller was the most efficient impeller for reducing the extent of nonideal flows in the continuous‐flow mixer among the impellers employed in this study. In addition, the mixing quality was further improved by optimising the power input, increasing the mean residence time, decreasing the fluid yield stress, using the up‐pumping impeller mode and using the top inlet–bottom outlet configuration. © 2011 Canadian Society for Chemical Engineering  相似文献   

7.
Fillet cracking of no‐flow underfill in a flip‐chip device during a reliability test such as thermal shock or thermal cycling has been a serious reliability problem. The effect of toughening agents and modification of epoxy on fillet cracking of no‐flow underfill was investigated. The best epoxy formulation and the appropriate loading level of toughening agent regarding the antifillet cracking performance were found. In the case where the epoxy was modified with polysiloxanes, the second‐phase particle with a submicron particle size was formed and the size of the particle depended on the kind of toughening agent. The morphology was observed by a scanning electron microscopy and confirmed by a dynamic mechanical analyzer measurement. The physical properties such as the fracture toughness, flexual modulus, coefficient of thermal expansion, and adhesion were measured, and the liquid–liquid thermal shock (LLTS) test under ?55 to 125°C was performed with different formulations. One of the formulations toughened by amine/epoxy‐terminated polysiloxane, which has higher die shear strength, lower modulus, and higher toughness, passed 1000 cycles of the LLTS test. In order to obtain a high reliable no‐flow underfill, the physical properties of the no‐flow underfill should be well controlled and balanced. Finally, a correlation between physical properties of the no‐flow underfill and the fillet cracking capability for those approaches was discussed. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 2439–2449, 2003  相似文献   

8.
In the present work, a new low‐shear rotating reactor concept was introduced for process intensification of heterogeneous catalytic reactions in cocurrent gas–liquid downflow and upflow packed‐bed reactors. To properly assess potential advantages of this new reactor concept, exhaustive hydrodynamic experiments were carried out using embedded low‐intrusive wire mesh sensors. The effect of the rotational velocity on liquid flow patterns in the bed cross‐section, liquid saturation, pressure drop, and regime transition was investigated. Furthermore, liquid residence time and Péclet number estimated by a stimulus‐response technique and a macro‐mixing model were presented and discussed with respect to the prevailing flow patterns. The results revealed that the column rotation induces different flow patterns in the cross‐section of the packed bed operating in a concurrent downflow or upflow mode. Moreover, the new reactor concept exhibits a more flexible adjustment of pressure drop, liquid saturation, liquid residence time, and back‐mixing at constant flow rates. © 2016 American Institute of Chemical Engineers AIChE J, 63: 283–294, 2017  相似文献   

9.
The anomaly of shear thickening at high shear rates can be observed under certain conditions for high molecular weight polymers dissolved in low‐viscosity Newtonian solvents despite the fact that shear‐thinning behavior is considered the norm for these fluids. The nature of the shear‐thickening region of the flow curve is examined herein through the application of a recent rheological model that has the capability of quantifying not only the rheological properties of the material, but its internal microstructural state as well. The results of this examination provide a self‐consistent explanation of the full flow characterization of this anomalous behavior, including both rheological and optical experimental measurements. The results presented herein suggest that the shear‐thickening behavior is actually caused by the destruction of structures formed during shear at lower shear rates, not by their formation, as previously assumed. The linear birefringence and linear dichroism observed experimentally in correlation with the shear‐thickening behavior are well described by the rheological model and give predictions in line with experimental measurements. Furthermore, quantitative predictions are made for rheological characteristic functions, such as the first and second normal‐stress coefficients, for which experimental measurements for these solutions have not yet been made. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 1714–1735, 2002  相似文献   

10.
11.
We used an area density tensor as an interface variable of immiscible polymer blend. A phenomenological model for the evolution of such area density tensor in flow fields was established based on the concept of non‐equilibrium thermodynamics of complex polymeric fluids, without the limitations of passive mixing. Phase deformation, break up, relaxation, coalescence effect, as well as non‐affine deformation of the dispersed phase with matrix are all considered in the model. The model predictions show that interfacial slip greatly affects the morphology evolution. The influences of other factors, such as volume fraction, shear rate, interfacial tension, and viscosity ratio, on interfacial area development are also discussed.  相似文献   

12.
The optimal design of close clearance impellers requires the knowledge of the power demand of the mixing equipment. In non‐Newtonian mixing, this can be readily obtained using the Metzner and Otto concept [1]. In this work, this concept and the determination of the Ks value for an atypical helical agitator (PARAVISC system from Ekato firm) have been revised in the case of shear‐thinning fluids and a shear‐thickening fluid. For poor shear‐thinning fluids, it has been shown that for our mixing system the Ks value does not vary strongly with the flow behavior index, and may be regarded as a constant for the mixing purpose design. By contrast, for the shear‐thickening fluid, power consumption measurements indicate that the relationship between the Ks values and the flow behavior index is much more complex due to a partial solidification of the product around the impeller.  相似文献   

13.
Tomography, an efficient nonintrusive technique, was employed to visualize the flow in continuous‐flow mixing and to measure the cavern volume (Vc) in batch mixing. This study has demonstrated an efficient method for flow visualization in the continuous‐flow mixing of opaque fluids using two‐dimensional (2‐D) and 3‐D tomograms. The main objective of this study was to explore the effects of four inlet‐outlet configurations, fluid rheology (0.5–1.5% xanthan gum concentration), high‐velocity jet (0.317–1.660 m s?1), and feed flow rate (5.3 × 10?5?2.36 × 10?4 m3 s?1) on the deformation of the cavern. Dynamic tests were also performed to estimate the fully mixed volume (Vfully mixed) for the RT, A310, and 3AM impellers in a continuous‐flow mixing system, and it was found that Vfully mixed was greater than Vc. Incorporating the findings of this study into the design criteria will minimize the extent of nonideal flows in the continuous‐flow mixing of complex fluids and eventually improve the quality of end‐products. © 2013 American Institute of Chemical Engineers AIChE J, 60: 315–331, 2014  相似文献   

14.
The miscible liquid‐liquid two phases based on Taylor flow in microchannels was investigated by high‐speed imaging techniques and Villermaux/Dushman reaction. The mixing based on Taylor flow was much better compared with that without introducing gas in microchannels, even the ideal micromixing performance could be obtained under optimized superficial gas and liquid velocities. In the mixing process based on Taylor flow, the superficial gas and liquid velocities affected the lengths and the velocities of Taylor bubble and liquid slug, and finally the micromixing performance. The formation process of Taylor flow in the inlets, the initial uniform distribution of reactants and the internal circulations in the liquid slug, and the thin liquid films all improved the mixing performance. Furthermore, a modified Peclet number that represented the relative importance of diffusion and convection in the mixing process was proposed for explaining and anticipating micromixing efficiency. © 2011 American Institute of Chemical Engineers AIChE J, 58: 1660–1670, 2012  相似文献   

15.
Understanding the mixing capability of mixing devices based on their geometric shape is an important issue both for predicting mixing processes and for designing new mixers. The flow patterns in mixers are directly connected with the modes of the local strain rate, which is generally a combination of elongational flow and planar shear flow. We develop a measure to characterize the modes of the strain rate for general flow occurring in mixers. The spatial distribution of the volumetric strain rate (or non‐planar strain rate) in connection with the flow pattern plays an essential role in understanding distributive mixing. With our measure, flows with different types of screw elements in a twin‐screw extruder are numerically analyzed. The difference in flow pattern structure between conveying screws and kneading disks is successfully characterized by the distribution of the volumetric strain rate. The results suggest that the distribution of the strain rate mode offers an essential and convenient way for characterization of the relation between flow pattern structure and the mixer geometry. © 2016 American Institute of Chemical Engineers AIChE J, 62: 2563–2569, 2016  相似文献   

16.
A novel tubular flow reactor where a straight tube is modified by pinching it periodically at a fixed pitch and at different angles is presented. Pinched tubes (straight tube as well as helical coils) with different pitch and angles between successive pinching are studied. This work reports a detailed hydrodynamic study involving single and two‐phase flow. Mixing experiments showed that having an angle of 90° between successive pinchs achieves the shortest mixing length when compared to lower angles. Pressure recovery along with sequence of high and low shear zones and change of flow direction imposed better mixing. Residence time distribution studies showed that higher number of pinch sections decreases the extent of dispersion, yet it deviates from plug flow. The performance is evaluated by carrying a homogeneous and two‐phase aromatic nitration and also liquid‐liquid extraction. Pinched tube presents an economical option as a flow reactor for conducting exothermic reactions. © 2016 American Institute of Chemical Engineers AIChE J, 63: 358–365, 2017  相似文献   

17.
How to reduce flow resistance of nano-confined fluids to achieve a high flux is a new challenge for modern chemical engineering applications, such as membrane separation and nanofluidic devices. Traditional models are inapplicable to explain the significant differences in the flow resistance of different liquid–solid systems.On the other hand, friction reduction in liquid nano-lubrication has received considerable attention during the past decades. Both fields are exposed to a common scientific issue regarding friction reduction during liquid–solid relative motion at nanoscale. A promising approach to control the flow resistance of nano-confined fluids is to reference the factors affecting liquid nano-lubrication. In this review, two concepts of the friction coefficient derived fromfluid flow and tribologywere discussed to reveal their intrinsic relations. Recent progress on lowor ultra-low friction coefficients in liquid nano-lubrication was summarized based on two situations. Finally, a new strategy was introduced to study the friction coefficient based on analyzing the intermolecular interactions through an atomic force microscope (AFM), which is a cutting-point to build a new model to study flowresistance at nanoscale.  相似文献   

18.
Static or motionless mixers have received wide application in chemical and allied industries due to their low cost and high efficiency. The pressure drop and mixing behaviour of such mixers have been widely studied. However, the available information for non‐Newtonian fluids is scanty. The results of pressure drop and mixing studies conducted with a locally made motionless mixer (MALAVIYA mixer) and four non‐Newtonian fluids—aq. CMC, PVA, and PEG solutions are reported in this article. The new mixer causes less pressure drop compared to some of the commercial mixers. Mixing behaviour of the unit is more closer to plug flow and a two‐parameter model correlates the dispersion data.  相似文献   

19.
A new laboratory‐scale mixing device based on an original concept was built and tested. This device has important technical features such as tightness to liquids and gases, the possibility of direct specimen molding after mixing, and easy handling of reactive systems. In comparison with existing laboratory mixers, the flow in this mixer is characterized by a high contribution from elongational flow. Morphological data on model polystyrene/poly(methyl methacrylate) blend systems have proved the high distributive and dispersive mixing efficiency in comparison with a classical rotational batch mixer. The influence of different experimental parameters such as the flow rate, mixing time, mixing element geometry, and viscosity ratio of blends is characterized and discussed. Much finer dispersions have been obtained with this new device versus those obtained with a conventional mixer with equivalent specific energy input. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

20.
In order to examine dispersion properties of magnetorheological (MR) fluids, characteristics of its medium oil such as their rheological property and density are being focused in this study. Carbonyl iron (CI) based MR fluid with an aqueous polymeric solution using poly(ethylene oxide) (PEO) as a medium was prepared. MR characteristics as a function of applied magnetic field strength was investigated using a rotational rheometer with MR devices attached, demonstrating that the characteristics of the CI–PEO based MR fluids were affected by a medium viscosity in a steady shear flow.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号