首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
InP(1 0 0) surfaces were sputtered under ultrahigh vacuum conditions by 5 keV ions at an angle of incidence of 41° to the sample normal. The fluence, , used in this study, varied from 1 × 1014 to 5 × 1018 cm−2. The surface topography was investigated using field emission scanning electron microscopy (FE-SEM) and atomic force microscopy (AFM). At the lower fluences ( 5 × 1016 cm−2) only conelike features appeared, similar in shape as was found for noble gas ion bombardment of InP. At the higher fluences, ripples also appeared on the surface. The bombardment-induced topography was quantified using the rms roughness. This parameter showed a linear relationship with the logarithm of the fluence. A model is presented to explain this relationship. The ripple wavelength was also determined using a Fourier transform method. These measurements as a function of fluence do not agree with the predictions of the Bradley–Harper theory.  相似文献   

2.
With the aim to study the effects of an ion beam on plant cells, upland cotton (Gossypium hirsutum L.) cultivar “Sumian 22” pollen grains were irradiated in vacuum (7.8 × 10−3 Pa) by low-energy nitrogen ions with an energy of 20 keV at various fluences ranging from 0.26 × 1016 to 0.78 × 1016 N+/cm2. The irradiation effects on pollen grains were tested, considering the ultrastructural changes in the exine and interior walls of pollen grains, their germination rate, the growth speed of the pollen tubes in the style, fertilization and boll development after the pistils were pollinated by the pollen grains which had been implanted with nitrogen ions. Nitrogen ions entered the pollen grains by etching and penetrating the exine and interior walls and destroying cell structures. A greater percentage of the pollen grains were destroyed as the fluence of N+ ions increased. Obviously, the nitrogen ion beam penetrated the exine and interior walls of the pollen grains and produced holes of different sizes. As the ion fluence increased, the amount and the density of pollen grain inclusions decreased and the size of the lacuna and starch granules increased. Pollen grain germination rates decreased with increasing ion fluence. The number of pollen tubes in the style declined with increased ion implantation into pollen grains, but the growth speed of the tubes did not change. All of the pollen tubes reached the end of the style at 13 h after pollination. This result was consistent with that of the control. Also, the weight and the diameter of the ovary decreased and shortened with increased ion beam implantation fluence. No evident change in the fecundation time of the ovule was observed. These results indicate that nitrogen ions can enter pollen grains and cause a series of biological changes in pollen grains of upland cotton.  相似文献   

3.
In this work we have compared the effects of neutron (1021–1022 n/m2 fluences) and gamma irradiation (23.8 MGy dose) on the IR–vis–UV optical absorption spectra of high purity silica with different OH content: KU1 (800 ppm), KS-4V (<0.2 ppm), and commercial silica Infrasil 301 (<8 ppm). The results show that the UV–vis optical degradation of the silica, after neutron irradiation at the highest fluence is similar for the three grades studied, while gamma-induced optical absorption depends on the material grade (KS-4V shows the lowest optical absorption). The effects of both types of radiation on the IR band related with the hydroxyl group (3650 cm−1) depend on the silica grade. For KU1, the shape of this band changes with neutron fluence. For Infrasil 301 gamma and neutron irradiated, this band height increases, possibly due to free molecular or hydrogen atoms. The shift to lower energies observed for the 2260 cm−1 band in the three neutron irradiated silica grades, reflects the changes induced by neutrons in the lattice bonding angle distribution.  相似文献   

4.
Ion irradiation can be used to induce partial crystallization in metallic glasses to improve their surface properties. We investigated the microstructural changes in ribbon Zr55Cu30Al10Ni5 metallic glass after 1 MeV Cu-ion irradiation at room temperature, to a fluence of 1.0 × 1016 cm−2. In contrast to a recent report by others that there was no irradiation induced crystallization in the same alloy [S. Nagata, S. Higashi, B. Tsuchiya, K. Toh, T. Shikama, K. Takahiro, K. Ozaki, K. Kawatusra, S. Yamamoto, A. Inouye, Nucl. Instr. and Meth. B 257 (2007) 420], we have observed nanocrystals in the as-irradiated samples. Two groups of nanocrystals, one with diameters of 5–10 nm and another with diameters of 50–100 nm are observed by using high resolution transmission electron microscopy. Experimentally measured planar spacings (d-values) agree with the expectations for Cu10Zr7, NiZr2 and CuZr2 phases. We further discussed the possibility to form a substitutional intermetallic (NixCu1−x)Zr2 phase.  相似文献   

5.
Conidia of Streptomyces erythreus, an industrial microbe, were implanted by nitrogen ions with energy of 40–60 keV and fluence from 1 × 1011 to 5 × 1014 ions/cm2. The logarithm value of survival fraction had good linear relationship with the logarithm value of fluence. Some mutants with a high yield of erythromycin were induced by ion implantation. The yield increment was correlated with the implantation fluence. Compared with the mutation results induced by ultraviolet rays, mutation effects of ion implantation were obvious having higher increasing erythromycin potency and wider mutation spectrum. The spores of Bacillus subtilis were implanted by arsenic ions with energy of 100 keV. The distribution of implanted ions was measured by Rutherford Backscattering Spectrometry (RBS) and calculated in theory. The mechanism of mutation induced by ion implantation was discussed.  相似文献   

6.
The dependence of the mechanical properties on the depth position in the unirradiated state and after irradiation up to neutron fluences of approximately 5 × 1018 and 70 × 1018 cm−2 (E > 0.5 MeV) is tested on a forging made out of VVER 440 reactor pressure vessel (RPV) steel 15CrMoV. The near-surface position shows a higher strength and a lower transition temperature than the positions greater than 1/4 wall thickness. Irradiation does not change these differences in a significant manner. The testing of specimens from the 1/4 depth position within the surveillance programme, as normally laid down in the legal rules relating to nuclear power plants, results in a conservative safety assessment against brittle failure up to the EOL fluence. On taking into account fluence attenuation, the flux effect, etc., the toughness gradually increases from the inside to the outside of the wall after longer RPV operating times.  相似文献   

7.
This paper presents the experimental study of the flow instabilities in the first rows of tube banks. The study is performed using hot wire anemometry technique in an aerodynamic channel as well as flow visualizations in a water channel. In the wind channel three tube banks with square arrangement and pitch to diameter ratios P/D = 1.26, 1.4 and 1.6 were studied. The Reynolds number range for the velocities measurements, computed with the tube diameter and the flow velocity in the narrow gap between tubes was 7 × 104–8 × 104. Continuous and discrete wavelets were applied to decompose the velocity results, thus allowing the analysis of phenomena in time–frequency domain. Visualizations in a water channel complemented the analysis of the hot wire results. For this purpose, dye was injected in the flow in the water channel with a tube bank with P/D = 1.26. The range of the Reynolds number of the experiments was 3 × 104–4 × 104. The main results show the presence of instabilities, generated after the second row of the tube bank, which propagates to the interior of the bank. In the resulting flow, the three orthogonal components are equally significant. The three-dimensional behavior of the flow is responsible for a mass redistribution inside the bank that leads to velocity values not expected for the studied geometry, according to the known literature. The resulting flow process can be interpreted as a secondary flow which is characteristic of tube banks.  相似文献   

8.
Electrical properties of silicon diodes with p+n junctions irradiated with 197Au+26 swift heavy ions (energy E = 350 MeV, fluences of 107 cm−2 and 108 cm−2) and silicon diodes irradiated with electrons (energy E = 3.5 MeV, fluences of 1015 cm−2, 5 × 1015 cm−2 and 1016 cm−2) have been investigated. Frequency dependences of the impedance, current-voltage characteristics and switching characteristics of these devices have been studied. Irradiation of the diodes with 197Au+26 ions at a fluence of 108 cm−2 leads to the formation of a quasi-continuous layer of irradiation-induced defects that enable a combination of characteristics such as a reverse resistance recovery time and direct voltage drop that are better than those for electron-irradiated diodes. Still, the irradiation of high-energy ions results in an increase in recombination currents that are larger than those obtained with electron irradiation, and causes more complicated frequency dispersion of the diode parameters.  相似文献   

9.
Irradiation-induced burrowing and ion-induced shaping effects of Au nanoparticles are investigated. Hexagonally arranged Au nanoparticles prepared by micellar technique with diameter ~10 nm and inter-particle distance of about 80 nm were sequentially irradiated with 200 keV Ar+ ions to fluences of 5×1015 ions/cm2. Irradiation with Argon ions causes sinking of the Au nanoparticles into the subjacent SiO2 layer due to capillary driving forces related to specific wetting conditions while the spherical shape is conserved. Subsequent irradiation with 54 MeV Ag8+ swift heavy ions of these spherical Au nanoparticles confined within a silica matrix shapes them into prolate nanorods and nanowires whose principal axes are aligned along the beam direction. Above a threshold fluence two deformation regimes have been observed. For relatively low fluences Au nanoparticles elongate into nanorods depending on their volume. For high fluences, the formation of nanowires is observed provided that the inter-particle distance is short enough to allow for an efficient mass transport through the silica matrix.  相似文献   

10.
M.  V.   《Nuclear Engineering and Design》2008,238(10):2811-2814
Experiences with an advanced spent nuclear fuel management in Slovakia are presented in this paper. The evaluation and monitoring procedures are based on practices at the Slovak wet interim spent fuel storage facility in NPP Jaslovské Bohunice. Since 1999, leak testing of WWER-440 fuel assemblies were completed using a special leak tightness detection system developed by Framatome-anp, “Sipping in Pool”. This system utilized external heating for the precise defects determination.Optimal methods for spent fuel disposal and monitoring were designed. A new conservative factor for specifying of spent fuel leak tightness is introduced in the paper. Limit values of leak tightness were established from the combination of SCALE4.4a (ORIGEN-ARP) calculations and measurements from the “Sipping in Pool” system. These limit values are: limiting fuel cladding leak tightness coefficient for tight fuel assembly – kFCT(T) = 3 × 10−10, limiting fuel cladding leak tightness coefficient for fuel assembly with leakage – kFCT(L) = 8 × 10−7.  相似文献   

11.
The irradiation damage caused on polyethylene terephtalate (Mylar, PET) samples by 1.6 MeV deuteron ions has been measured using simultaneously the nuclear reaction analysis (NRA) and the transmission energy loss (TEL) techniques. The irradiation was carried out at normal incidence relative to the target surface with the irradiation beam being used as the analysis beam. The evolution of the overall damage during irradiation was evaluated by measuring the variation of the energy loss of the deuteron beam passing through the target. For this purpose, a solid state Si detector placed at a forward angle of 30° relative to the incident beam direction was used. The NRA spectra recorded by a second Si detector located backward at 150° allowed the evaluation of the carbon and the oxygen depletion. The beam spot size was circular in shape and 1 mm in diameter and the beam current was set at 5 nA. The ion fluence was increased up to the value of 2.5 × 1016 deuterons/cm2. It was observed that the target energy loss decreased steadily as the fluence increased and levelled off at high fluence. The 16O(d,p0)17O, 16O(d,p1)17O* and 12C(d,p0)13C reactions were used for monitoring the evolution of the oxygen and carbon content as a function of the deuteron fluence. A monotonic decrease of the oxygen content with the increase of ion fluence was observed. At the highest fluence the oxygen depletion reached a value of about 75%. For carbon, a weak depletion was observed at fluence ranging from 2.5 × 1015 d/cm2 to 1.0 × 1016 d/cm2 followed by a levelling-off with a total loss around 20%.  相似文献   

12.
Fluorescent soft X-ray carbon Kα emission spectra (XES) have been used to characterize the bonding of carbon atoms in polyimide (PI) and polycarbosilane (PCS) films. The PI films have been irradiated with 40 keV nitrogen or argon ions, at fluences ranging from 1 × 1014 to 1 × 1016 cm−2. The PCS films have been irradiated with 5 × 1015 carbon ions cm−2 of 500 keV and/or annealed at 1000°C. We find that the fine structure of the carbon XES of the PI films changes with implanted ion fluence above 1 × 1014 cm−2 which we believe is due to the degradation of the PI into amorphous C:N:O. The width of the forbidden band as determined from the high-energy cut-off of the C Kα X-ray excitation decreases with the ion fluence. The bonding configuration of free carbon precipitates embedded in amorphous SiC which are formed in PCS after irradiation with C ions or combined treatments (irradiation and subsequent annealing) is close to either to that in diamond-like films or in silicidated graphite, respectively.  相似文献   

13.
To simulate the nuclear fuel for High Temperature Engineering Testing Reactor (HTTR), fuel compact models using SiC-kernel coated particles instead of UO2-kernel coated particles were prepared under the same conditions as those for the real fuel compact. The mechanical and fracture mechanics properties were studied at room temperature. The thermal shock resistance and fracture toughness for thermal stresses of the fuel compact were experimentally assessed by means of arc discharge heating applied at a central area of the disk specimens. These model specimens were then neutron irradiated in the Japan Material Testing Reactor (JMTR) for fluences up to 1.7 × 1021n/cm2 (E ·> 29 fJ) at 900°C ± 50°C. The effects of irradiation on a series of fracture mechanical properties were evaluated and compared with the cases of graphite IG-110 used as the core materials in the HTTR.  相似文献   

14.
Fiber reinforced composites impregnated with mixtures of various cyanate ester and epoxy resins demonstrated their excellent performance at the ITER design fluence and beyond. The insulation systems consist of a wrapped R-glass/Kapton reinforcement, vacuum impregnated with a cyanate ester/epoxy blend. For the fabrication of the insulation a long pot-life of the resin is of great importance, which is mainly determined by the amount and the composition of the catalyst needed for curing the resin. However, the catalyst, which amounts to 1–2% of the resin, may also affect the mechanical properties as well as the radiation hardness of the material. In order to investigate these effects, two different composites were fabricated using a Mn- and a Co-catalyst, respectively.The mechanical properties are characterized prior to and after irradiation to a fast neutron fluence of 1 × 1022 m−2 (E > 0.1 MeV) in tension and interlaminar shear at 77 K.  相似文献   

15.
Swift Heavy Ion (SHI) irradiation of the polymeric materials modifies their physico-chemical properties. Lexan polycarbonate films were irradiated with 95 MeV oxygen ions to the fluences of 1010, 1011, 1012, 1013 and 2 × 1013 ions/cm2. Characterization of optical, chemical, electrical and structural modifications were carried out by UV–Vis spectroscopy, FTIR spectroscopy, Dielectric measurements and X-ray Diffraction. A shift in the optical absorption edge towards the red end of the spectrum was observed with the increase in ion fluence. The optical band gap (Eg), calculated from the absorption edge of the UV–Vis spectra of these films in 200–800 nm region varied from 4.12 eV to 2.34 eV for virgin and irradiated samples. The cluster size varied in a range of 69–215 carbon atoms per cluster. In FTIR spectra, appreciable modification in terms of breaking of the cleavaged C–O bond of carbonate and formation of phenolic O–H bond was observed on irradiation. A rapidly decreasing trend in dielectric constant is observed at lower frequencies. The dielectric constant increases with fluence. It is observed that the loss factor increases moderately with fluence and it may be due to scissoring of polymer chains, resulting in an increase in free radicals. A sharp increase in A.C. conductivity in pristine as well as in irradiated samples is observed with frequency and is attributed to scissoring of polymer chains. XRD analyses show significant change in crystallinity with fluence. A decrease of ~9.02% in crystallite size of irradiated sample at the fluence of 2 × 1013 ions/cm2 is observed.  相似文献   

16.
Fracture toughness of polycrystalline Fe, Fe–3%Cr and Fe–9%Cr was measured by four-point bending of pre-cracked specimens at temperatures between 77 K and 150 K and strain rates between 4.46 × 10−4 and 2.23 × 10−2 s−1. For all materials, fracture behaviour changed with increasing temperature from brittle to ductile at a distinct brittle–ductile transition temperature (Tc), which increased with increasing strain rate. At low strain rates, an Arrhenius relation was found between Tc and strain rate in each material. At high strain rates, Tc was at slightly higher values than those expected from extrapolation of the Arrhenius relation from lower strain rates. This shift of Tc was associated with twinning near the crack tip. For each material, use of an Arrhenius relation for tests at strain rates at which specimens showed twinning gave the same activation energy as for the low strain rate tests. The values of activation energy for the brittle–ductile transition of polycrystalline Fe, Fe–3%Cr and Fe–9%Cr were found to be 0.21, 0.15 and 0.10 eV, respectively, indicating that the activation energy for dislocation glide decreases with increasing chromium concentration in iron.  相似文献   

17.
This paper describes changes in the thermal shock resistance and the thermal shock fracture thoughness in addition to the usual mechanical properties including the diametral compressive strength and fracture toughness of four varieties of graphite for the high temperature gas-cooled reactor due to neutron irradiations of (1.6 2.3) × 1021 n/cm2 (E > 0.18 MeV) at 600 850°C. These experiments are carried out by using small disk specimens which can be conveniently loaded into a capsule for irradiation in the Japanese Materials Testing Reactor. Both the thermal shock resistance and the thermal shock fracture toughness of graphites after irradiation decreased markedly despite of the increase in mechanical strength.  相似文献   

18.
The effect of swift heavy ion irradiation on hydroxyapatite (HAp) ceramic - a bone mineral was investigated. The irradiation experiment was conducted using oxygen ions at energy of 100 MeV with three different fluences of 1012, 1013, 1014 ions/cm2. The irradiated samples were characterized by glancing angle X-ray diffraction (GXRD), atomic force microscopy (AFM), dynamic light scattering (DLS), photoluminescence spectroscopy (PL), scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDAX). GXRD confirmed incomplete amorphisation of HAp with increase in fluence. There was considerable reduction in particle size on irradiation leading to nanosized HAp (upto 53 nm). PL studies showed emission in the visible wavelength region. The irradiated samples exhibited better bioactivity than the pristine HAp.  相似文献   

19.
Effects of 150 MeV Ni11+ swift heavy ion (SHI) irradiation on copper ferrite nanoparticles have been studied at the fluences of 1 × 1011, 1 × 1012, 1 × 1013, 1 × 1014 and 5 × 1014 ions/cm2. The XRD pattern shows the irradiation fluence dependant preferential orientation. Scanning electron microscope analysis displays fine blocks of material for pristine while partial agglomeration on irradiation. Notably, a large number of holes are present at the fluence of 5 × 1014 ions/cm2. The magnetization measurements performed in these samples exposes that the coercivity and remanence magnetization value increases due to the magnetocrystalline anisotropy up to the fluence of 1 × 1013 ions/cm2. At 1 × 1014 ions/cm2 fluence, the induced thermal energy overcomes the magnetocrystalline anisotropy constant and causes a decrease in coercivity and remanence values. The saturation magnetization decreases up to the fluence of 1 × 1013 ions/cm2 and then it increases for further irradiation. The change of crystalline orientation observed from XRD, the creation of holes from SEM and the change in magnetic properties are discussed on the basis of electro-phonon coupling and it invokes the thermal spike theory.  相似文献   

20.
Poly(ether ether ketone) was irradiated with 3.0 MeV Si2+, 3.25 MeV Cu2+ and 4.8 MeV Ag2+ ions to the fluences from 1012 to 1014 cm−2 and the effects of irradiation were studied using ERDA, RBS and FTIR methods. The irradiation leads to release of hydrogen from the PEEK surface layer modified by the ion beam. The release is mild for low ion fluences but it becomes more pronounced at the ion fluences above 1013 cm−2. At highest ion fluences the hydrogen concentration falls to 20-35% of its initial value. In contrast to hydrogen no significant oxygen release was observed. The kinetic of the hydrogen release is similar for the three ion species. FTIR measurement shows deep structural changes of the polymer structure resulting from the ion irradiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号