首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
This paper focuses on a new three-phase high power current-fed dc/dc converter with an active clamp. A three-phase dc/dc converter with high efficiency and voltage boosting capability is designed for use in the interface between a low-voltage fuel-cell source and a high-voltage dc bus for inverters. Zero-voltage switching in all active switches is achieved through using a common active clamp branch, and zero current switching in the rectifier diodes is achieved through discontinuous current conduction in the secondary side. Further, the converter is capable of increased power transfer due to its three-phase power configuration, and it reduces the rms current per phase, thus reducing conduction losses. Moreover, a delta-delta connection on the three-phase transformer provides parallel current paths and reduces conduction losses in the transformer windings. An efficiency of above 93% is achieved through both improvements in the switching and through reducing conduction losses. A high voltage ratio is achieved by combining inherent voltage boost characteristics of the current-fed converter and the transformer turns ratio. The proposed converter and three-phase PWM strategy is analyzed, simulated, and implemented in hardware. Experimental results are obtained on a 500-W prototype unit, with all of the design verified and analyzed.   相似文献   

2.
This paper presents a novel prototype of three-phase current-fed PWM converter with a switched capacitor type resonant dc link snubber circuit, which can basically operate under a principle of zero current soft switching commutation. The optimum PWM pattern-based control scheme proposed by the authors is effectively applied for this active converter. In this paper, the steady-state operating principle of a new converter circuit treated here is described. The practical design procedure of this converter is discussed from a theoretical point of view. The feasible experiment to confirm zero current soft switching commutation of this converter is concretely implemented and evaluated herein.  相似文献   

3.
A novel active power factor correction method for power supplies with three-phase front-end diode rectifiers is proposed and analyzed. The implementation of this method requires the use of an additional single switch boost chopper. The combined front-end converter draws sinusoidal AC currents from the AC source with nearly unity input power factor while operating at a fixed switching frequency. It is shown that when the active input power factor correction stage is also used to regulate the converter DC bus voltage, the converter performance can improve substantially in comparison with the conventional three-phase AC-to-DC converters. These improvements include component count reduction, simplified input synchronization logic requirements, and smaller filter refractive components. Theoretical results are verified experimentally. The proposed method has the disadvantage of substantially increasing the current stresses of the switching devices and the high-frequency ripple content of the prefiltered AC input currents  相似文献   

4.
In this paper, first a set of generalized zero-space vectors is proposed. Based on this concept, a novel single-stage three-phase pulsewidth modulation (PWM) boost-buck AC/DC converter is then proposed to achieve clean sinusoidal input current, unity power factor, adjustable DC voltage and fixed switching frequency and to be insensitive to input voltage distortion as well as simplify the control of all switches. By choosing proper switching sequences such that the largest magnitude line current is conducted through the antiparallel diodes without switching action, the switching loss and thermal stress can be reduced greatly. Finally, a prototype is constructed, and experimental results are given to validate the proposed converter  相似文献   

5.
A new three-phase current-fed soft-switching PWM converter is presented. This converter utilises two types of switching commutation scheme to improve the PWM current utilisation rate. It is shown by means of computer simulation that this converter has low THD and offers unity power factor correction  相似文献   

6.
AC voltage and current sensorless control of three-phase PWM rectifiers   总被引:6,自引:0,他引:6  
In this paper, a novel control scheme of three-phase PWM rectifiers eliminating both the AC input voltage and current sensors is proposed. The phase angle and the magnitude of the source voltage are estimated by controlling the deviation between the rectifier current and its model current to be zero. The input currents can be reconstructed from switching states of the PWM rectifier and the measured DC link currents. To eliminate the calculation time delay effect of the microprocessor, the currents ahead one sampling period are estimated by a state observer and then are used for feedback control. The proposed control scheme reduces the system cost and improves its reliability. The feasibility of the proposed AC sensorless technique for three-phase PWM rectifiers has been verified through experiments using a high performance DSP chip.  相似文献   

7.
This paper proposes a new high-power factor three-phase AC-DC power converter, which is composed of a line interphase transformer (LIT) and two three-phase diode rectifiers, followed by a pulsewidth modulation (PWM) DC-DC boost power converter. The active switch of the boost converter is gated at a constant frequency such that the AC input current is discontinuous. This procedure provides an input current shaping without the third, fifth and seventh harmonics. The currents that flow through the LIT and boost inductors have such a high-switching frequency that ferrite cores with a small size can be utilized. In addition, the output voltage is regulated by PWM to compensate for line voltage variations and load change. Theoretical analysis, design procedure and example, along with experimental results taken from a 6 kW laboratory prototype are given  相似文献   

8.
This paper proposes a new control method for the constant-frequency control of power factor correcting boost power converter using a sinewave template modulated PWM signal which eliminates the need for instantaneous measurement of the line current for the switching control of the boost converter. The control strategy is based on the notion that the line current can be forced to trace a deterministic waveform such as a sinusoid by considering the implicit model of the sinewave in the boost converter controller structure. The modulating sinewave template is generated using the line voltage, the boost converter output voltage and the load current. The paper provides the analysis and the design of the controller and presents simulation and implementation results to demonstrate its effectiveness  相似文献   

9.
Reference/modulating waveform continuity is not a necessary condition for the implementation of switching patterns for three-phase pulse-width modulated (PWM) converters if the load or the source are Y-connected. This is based on the fact that the converter phase-voltages do not need to be sinusoidal and switching pattern discontinuities-“dead-bands”-do not degrade the quality of output/input voltage/current waveforms by introducing low-order harmonics if certain parameters are optimized. This paper discusses general characteristics of various discontinuous switching patterns for PWM converters and shows that they can yield better performance than their continuous counterparts in some operating regions. Performance is defined as harmonic distortion normalized with respect to effective switching frequency and serves as a measure of comparison with continuous PWM techniques, The applications considered include general purpose and application specific solid-state power supplies using voltage source inverters and PWM rectifiers. Theoretical considerations are verified on an experimental unit  相似文献   

10.
A three-phase AC/DC converter based on isolated Cuk topology feeding an inductive load is presented. The main goal is to get a compact, highly stable current source to feed an electromagnet. A high power factor is achieved, at constant duty-cycle and switching frequency, by discontinuous input current mode operation. The converter presents a linear relationship between the duty-cycle and the output current, making it easier to design the control system. Additionally the voltage stress on the power transistor is constant and does not depend on the duty-cycle. An auxiliary circuit allows zero voltage turn-off while limiting the over-voltage on the switch produced by the transformer leakage inductance. Pulse-width modulation (PWM) control is used to reduce sensitivity to line disturbances and to eliminate the 300-Hz ripple on the output current. Experimental measurements taken on a 400-W prototype confirm theoretical forecasts  相似文献   

11.
A new soft-switched AC/DC pulse width modulation (PWM) converter structure is presented. It is useful for current-fed inverters and PWM rectifiers. Typical applications are magnet power supplies, high-power AC motor drives, and active power filters with magnetic energy storage. Soft switching is provided at the expense of a limited increase of the circuit complexity as compared to usual hard-switching solutions. A discussion of the soft commutation process is presented. By a proper switching sequence, overvoltages across the converter switches can be fully eliminated. Moreover, light-load operation can be achieved. Both typical limitations of soft-switched current-fed topologies are therefore overcome. Simulation and experimental results demonstrate the actual converter capabilities  相似文献   

12.
ABSTRACT

An interleaved frequency control soft switching converter is studied for solar power or fuel cell power applications. The proposed circuit topology contains two parallel current-fed circuit cells with interleaved pulse-width modulation operation. Thus, the ripple currents at input and output terminals are decreased. In each circuit cell, the proposed current-fed dc-dc converter includes boost circuit and resonant circuit to achieve current ripple-free on low voltage side and less switching losses on active devices. The boost circuit and the resonant circuit have same active devices to decrease power switches. Due to the resonant behaviour, the reverse recovery current loss on secondary diodes is removed. The voltage doubler circuit topology is accomplished on secondary-side to reduce diode counts and conduction loss. The performance and effectiveness of the developed interleaved PWM current-fed converter are verified and confirmed by experiments.  相似文献   

13.
A recently proposed circuit P-Q transformation is used to analyze a three-phase controlled-current PWM rectifier. The DC operating point and AC transfer functions are completely determined. Most features of the power converter are clearly interpreted. They are: (1) the output voltage can be controlled from zero to maximum; (2) the system is equivalently an ideal current source in the steady state; (3) the system can be described as linear circuits; and (4) the input power factor can be arbitrarily controlled within a certain control range  相似文献   

14.
The three-phase Delta-Rectifier is formed by a delta-connection of single-phase pulsewidth modulation (PWM) rectifier modules and has the advantage that it can provide full rated output power in the case of a mains phase loss. In this paper the Delta-Rectifier, implemented with a standard (two-level and/or three-level) boost converter, is analyzed based on an equivalent star connection. Analysis of the Delta-Rectifier shows a redundancy in the switching states concerning the input voltage formation. Furthermore, the Delta-Rectifier has reduced current ripple in the mains phase currents if the modulation is implemented with synchronized PWM. A disadvantage of two-level Delta-Rectifier is the higher voltage stress on the switching devices; however this is mitigated when the boost converter is implemented with a three-level topology as realized for a 10.5-kW laboratory prototype. The Delta-Rectifier concept is proposed based on theoretical considerations and is verified experimentally. The influence of non-idealities on the current ripple formation in the practical realization is analyzed and a high quality mains phase current is demonstrated  相似文献   

15.
A novel rectifier topology for high power (0.5 to 10 MVA) current source based AC motor drives is proposed. This rectifier is composed of a multi-winding transformer, a multi-level diode rectifier and a modified multi-level buck converter. The rectifier produces near unity input power factor and sinusoidal input current under any operating conditions. In addition, the proposed rectifier features reliable operation and low manufacturing cost. In this paper, the operating principle of the proposed rectifier is introduced. A number of design issues are investigated, which include PWM switching patterns, input power factor and line current harmonic distortion. Some design considerations such as the effect of the line inductance discrepancy on system performance are addressed. Experiments on a 5 kVA/208V four-level prototype are carried out for verification.  相似文献   

16.
作为基本的电力电子变换器,单相全桥结构两电平电压源变换器包括单相电压源逆变器、单相并网逆变器、单相电压源整流器和单相有源电力滤波器,具有广泛的应用场合。鉴于单相电压源变换器具有多解性,可以寻找一种减少开关次数的调制算法,以便降低开关损耗。本文根据三相电压源全桥结构两电平电压源变换器的最小开关次数调制算法,设计了一种适合单相全桥结构两电平电压源变换器的最少开关次数的调制算法,在理论分析的基础上,采用MATLAB/SIMULINK进行了仿真验证。  相似文献   

17.
The paper presents the implementation of a DSP-based controller for three-phase, space-vector modulated converters. The implementation is illustrated for the control of a 2 kW, ZVS matrix power converter-based three-phase PWM rectifier. The controller features very high data processing speed (converter switching frequency of 100 kHz), and provides high-quality, low-distortion power converter input currents and output voltages. The controller can be implemented using only a few standard integrated circuits, providing high reliability and low cost  相似文献   

18.
This paper proposes a novel and simple direct power control of three-phase pulsewidth-modulated (PWM) rectifiers with constant switching frequency using space-vector modulation (DPC-SVM). The active and reactive powers are used as the pulse width modulated (PWM) control variables instead of the three-phase line currents being used. Moreover, line voltage sensors are replaced by a virtual flux estimator. The theoretical principle of this method is discussed. The steady-state and dynamic results of DPC-SVM that illustrate the operation and performance of the proposed system are presented. It is shown that DPC-SVM exhibits several features, such as a simple algorithm, good dynamic response, constant switching frequency, and particularly it provides sinusoidal line current when supply voltage is not ideal. Results have proven excellent performance and verify the validity of the proposed system.  相似文献   

19.
A new AC/AC power converter topology, in which all the switches operate in a resonant fashion to reduce switching losses, is proposed. The topology enables conduction-period control of individual current pulses, whereby pulse-width modulation (PWM) could be achieved to a fair degree of accuracy with the associated controller. The scheme implements current peak (resonant) limiting by a simple diode clamp. Improved switch utilization (voltage × current) and reduced part-count could be cited as the merits of the circuit over the previous soft-switched current-sourced AC/AC configurations. It is experimentally verified that the output PWM controller could be used to implement constant V/F operation, and the results are presented. In-depth design criteria for the topology that gives optimized voltage stresses are presented. A charge-based, line current feed-forward, mode-controller is introduced at the input and digitally verified. Feasibility of the simultaneous control over both input power-factor and smooth input-output line currents are studied and the digital verification is presented  相似文献   

20.
A novel zero-voltage-transition (ZVT) current-fed full-bridge pulsewidth modulation (PWM) power converter for single-stage power factor correction (PFC) is presented to improve the performance of the previously presented ZVT converter. A simple auxiliary circuit which includes only one active switch provides a zero-voltage-switching (ZVS) condition to all semiconductor devices (two active switches are required for the previous ZVT converter). This leads to reduced cost and a simplified control circuit compared to the previous ZVT converter. The ZVS is achieved for wide line and load ranges with minimum device voltage and current stresses. Operation principle, control strategy and features of the proposed power converter are presented and verified by the experimental results from a 1.5 kW 100 kHz laboratory prototype  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号