首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
以在30℃、RH为100%条件下湿老化5 d的丁羟(HTPB)推进剂试样为研究对象,分别进行了在10、30、50℃3种温度下的干燥恢复试验,测试了干燥恢复过程中推进剂试样的失水率和力学性能。综合分析了试验数据,得到了不同温度下干燥时初始阶段推进剂试样的失水率、抗拉强度恢复速率,以及各力学性能参量恢复度90%且伸长率比值1.2的恢复时间。对抗拉强度测试中得到的断面照片进行了对比和分析,将样品30℃干燥恢复1、4、9 d后的单向拉伸曲线绘制在一张图上进行比较寻找规律,在对试验数据和试验现象分析总结的基础上探讨了HTPB推进剂干燥恢复过程中氢键的作用规律。  相似文献   

2.
高能低燃速NEPE推进剂的研究   总被引:8,自引:4,他引:4  
采用调节 NEPE推进剂的配方组分、添加降速剂等手段进行了一系列降低燃速的研究。研究结果表明 ,增大 AP粒径、降低 NG/DEGDN的比例、适当降低 AP含量、添加少量降速剂 ,可达到降低燃速的目的。通过对 NEPE推进剂配方组分的调节 ,在没有添加降速剂时 ,其 4.0 MPa下燃速可达到 4.7mm/ s,并且实测标准比冲可达到 2 2 39.3N·s/ kg。  相似文献   

3.
Butacene在丁羟高燃速推进剂中的应用研究   总被引:1,自引:0,他引:1  
研究了Butacene(皮特辛)在丁羟高燃速推进剂配方中的催化效率和迁移特性。结果表明,含皮特辛的配方工艺性能优良;在铁含量相当的情况下,燃速比卡托辛配方高3~4 mm/s,催化效果优于卡托辛;贮存过程中铁含量基本未变,燃速最大变化只有6.24%,防迁移性明显优于卡托辛配方。Butacene可作为高效不迁移燃速催化剂应用于丁羟高燃速推进剂配方。  相似文献   

4.
含RDX低燃速丁羟推进剂的配方研究   总被引:1,自引:0,他引:1  
为满足某发动机装药需求,设计了固体质量分数为87.5%含RDX的低燃速丁羟推进剂配方,采用最小自由能法进行理论计算,研究了RDX和改性草酸铵对热力学参数的影响.用BSFΦ165标准试验发动机测试了比冲和燃速.结果表明,含RDX低燃速推进剂配方中,RDX和改性草酸铵的含量影响其热力学参数.当RDX质量分数为(10.0%),改性草酸铵为2.0%时,低燃速推进剂的实测比冲为2 374 N·s·kg~(-1),比冲效率为0.919,燃速为4.12 mm·s~(-1);通过添加少量改性草酸铵、改变氧化剂的粒度级配,能够在保证推进剂能量基本不变的前提下,满足含RDX低燃速丁羟推进剂配方的低燃速指标要求.  相似文献   

5.
低铝粉含量的HMX/HTPB推进剂研究   总被引:1,自引:0,他引:1  
对低铝粉含量的HMX/HTPB推进剂进行了配方研究。为获得少烟、高密度、高模量、高燃速、低压强指数的优良的综合性能,配方调试以铝粉质量分数<10%,用HMX替代部分AP来达到少烟目的;以HTPB/TDI/MAPO/STR黏合剂体系来获取高模量;通过AP级配调节,燃速催化剂的选择等方法,使推进剂具有不挥发物质量分数≥88.5%、20℃下密度≥1.78 g/cm3、σm≥3.1 MPa,燃速≥40 mm/s的良好性能,并具有药浆初始黏度低,流动、流平性好的优点。HTPB/AP/Al/HMX四组元推进剂经BSFΦ127标准发动机地面试车,内弹道p–t曲线在压强30 MPa以下,燃烧稳定;推进剂燃烧未急升导致压强异常现象。研制成的药柱经发动机地面试验可知混合比冲高达2 456.7 N·s/kg。  相似文献   

6.
HTPB推进剂的低温力学性能   总被引:3,自引:0,他引:3  
通过低温和低温恢复常温单轴拉伸试验,考察了低温条件下HTPB推进剂力学性能的变化情况,用SEM扫描电镜观察了推进剂拉伸断面形貌,分析了所得HTPB推进剂的拉伸应力-应变曲线和力学性能特性。结果表明,在低温拉伸条件下,HTPB推进剂主要表现为基体撕裂和颗粒脆断,而在低温恢复常温拉伸条件下,主要以"脱湿"破坏为主。推进剂的低温拉伸曲线具有明显的屈服现象发生,说明推进剂的屈服现象与低温有关。推进剂在低温和低温恢复常温条件下的最大抗拉强度、弹性模量和延伸率等力学性能呈现出不同的变化规律。  相似文献   

7.
通过单向拉伸力学性能实验,考察了不同测试温度和不同拉伸速率条件下NEPE推进剂力学性能的变化情况。采用扫描电镜(SEM)和原位拉伸SEM观察了推进剂拉伸断面形貌。结果表明,在低温测试条件下,NEPE推进剂最大伸长率较常温条件下显著降低,最大抗拉强度较常温和高温条件下显著升高,NEPE推进剂的破坏主要表现在黏合剂的撕裂和固体颗粒的断裂;在高温、慢拉伸速率的测试条件下,推进剂断裂时结构被破坏的程度较大,NEPE推进剂的破坏首先发生在固体颗粒堆积处,再到黏合剂网络结构。推进剂断裂的过程是推进剂拉伸取向与裂纹扩展之间的竞争过程。  相似文献   

8.
变燃速发射药的低温感性能   总被引:7,自引:6,他引:7  
根据银纹厚度随温度的变化,改变火药燃烧面和建立一个补偿系统,使变燃速发射药具有低温度系数。通过扫描电镜观察变燃速发射药的微观结构,观察到外层的银纹和银纹厚度随温度的变化情况;通过密闭爆发器实验,对发射药高、低、常温的燃烧性能进行了对比;在30mm火炮上进行内弹道试验,观察其温度系数的变化。结果表明。银纹厚度随温度的变化改变火药的燃烧面积,从而改变了变燃速发射药的气体生成速率;变燃速发射药高、低、常温燃烧性能变化不大;变燃速发射药具有较低的温度系数。  相似文献   

9.
阐述不同燃速的高固体含量高强度丁羟推进剂的工艺调节技术,研制出了中低燃速、中燃速和高燃速3种燃速范围,固体质量分数≥90%、20℃最大抗拉强度≥2.5MPa的丁羟推进剂配方,其工艺性能良好,并成功应用于高性能固体火箭发动机。  相似文献   

10.
组分对高能HTPB推进剂燃烧性能和力学性能的影响   总被引:1,自引:0,他引:1  
通过调整氧化剂AP粒径与含量、键合剂及R值,研究了固体质量分数为90%的HTPB推进剂的燃烧性能和力学性能。结果表明,在HTPB推进剂能量性能得到提高的同时,推进剂的燃烧性能和力学性能也得到了较好的保证。高固体含量下HTPB推进剂的燃烧和力学性能随配方调节呈现出较为明显的规律。推进剂的燃烧性能稳定,燃速和压力指数可调,压力指数控制在0.30~0.40;分别测定了高温(60℃)、常温(20℃)和低温(-40℃)力学性能,高温、低温和常温下的拉伸强度一般均大于1.0MPa,低温延伸率最高可达74.7%。  相似文献   

11.
为了研究湿老化对丁羟推进剂力学性能的影响,在10、30、50℃以及多种相对湿度条件下进行了丁羟推进剂的湿老化试验,对湿老化后的推进剂试样进行了力学性能测试,研究了温度在湿老化过程中的作用以及相对湿度对湿老化速度和力学性能下降程度的影响。结果表明,随着湿老化时间的增加,推进剂的力学性能逐渐下降;湿老化温度相同时,相对湿度越大相对抗拉强度的下降速度越快,下降程度也越大;相对湿度相近时,温度越高相对抗拉强度的下降速度越快。  相似文献   

12.
以丁羟推进剂为例,从其氧化剂、黏合剂、化学功能组分等化学组分和碳碳双键、羟基、环氧基、分子质量等结构特征的变化,以及这些变化所产生的脱湿现象、氧化交联反应等为识别判据的几个方面,综述了推进剂老化化学识别的国内外研究进展。指出了开展化学变化及其效应的综合运用、化学组分空间位置变化研究、无损检测新技术应用等3方面进一步研究的问题,并展望其发展前景。  相似文献   

13.
丁羟推进剂微观结构的统计特性分析   总被引:1,自引:0,他引:1  
为了表征丁羟推进剂的微观组成,分别用微CT扫描和数值计算两种方法得到了其微观结构.在数学模型中,将固体颗粒模型化为圆形和球形,利用基于分子动力学方法的随机颗粒堆积算法分别建立了丁羟推进剂二维和三维微观结构,并用Monte-Carlo方法计算了各相的两点概率函数.结果表明,建立的数值微观模型具有各态历经性、统计平均性和各...  相似文献   

14.
沙恒 《火炸药》1997,20(2):6-8
研究了颗粒粘结高燃速固体推进剂药柱中粘结剂与小粒药之间的溶剂双向迁移现象,并利用计算机模拟估算了溶剂迁移量的大致范围。  相似文献   

15.
加速度对丁羟推进剂燃速影响的研究   总被引:4,自引:0,他引:4  
郭彤  侯晓 《火炸药学报》2001,24(1):30-32
通过试验研究了加速度场中丁羟推进剂的燃速的加速度敏感性。另外从加速度力作用下燃烧区压缩导致热反馈增大角度出发,建立了加速度条件下推进剂稳态燃烧模型,并编程计算、分析了影响推进剂燃速敏感性的因素,可为发动机内弹道设计提供参考。  相似文献   

16.
湿度对丁羟推进剂及其粘接性能的影响研究   总被引:11,自引:0,他引:11  
固体火箭发动机燃烧室内绝热层、人工脱黏层及推进剂药柱,均为高分子材料复合体系。在成型及贮存过程中,湿度是影响丁羟推进剂药柱性能及各界面的联合粘接强度的首要因素。探讨了绝热层、衬层及推进剂药柱在不同环境湿度下的吸湿特性,通过模拟实际生产过程的环境湿度,研究了丁羟推进剂药柱性能及各界面的联合粘接强度变化状况。  相似文献   

17.
采用溶胀/溶解法回收报废HTPB推进剂中的AP。研究了浸取时间、浸取温度、四氢呋喃质量分数、液料比(四氢呋喃溶液体积与HTPB推进剂的质量比)、试样厚度及搅拌速率对AP回收率的影响。通过扫描电镜、X射线能谱仪对回收得到的AP进行表征,并对其纯度进行了检测。结果表明,AP的最佳回收工艺参数为:浸取时间6h、浸取温度60℃、四氢呋喃质量分数80%、液料比10∶1(mL/g)、试样厚度3mm、搅拌速率500r/min。其中,浸取时间、浸取温度和四氢呋喃质量分数对AP回收率的影响较大。在最佳工艺条件下,AP的回收率为95.0%,纯度为96.1%,表明此方法可用于报废HTPB推进剂中AP组分的回收。  相似文献   

18.
High burning rate composite propellants are achieved by incorporation of fine particles of oxidizer, transition metal oxides, and liquid ballistic modifiers. However, they pose processing problems, inertness to the composition and migration related issues. To overcome such problems, an attempt was made to incorporate ferrocenyl grafted HTPB as a burning rate modifier by partly replacing HTPB from 10 % to 50 % using TDI/ IPDI bicurative system and to study their processability in terms of viscosity, mechanical, thermal, sensitivity, and ballistic properties. The data on viscosity reveal that there is a marginal enhancement in end of mix viscosity as percentage of ferrocenyl grafted HTPB increases. The mechanical data reveal that tensile strength and elastic modulus increases, whereas percentage elongation decreases compared to base composition. The results on thermal properties infer that, as the percentage of ferrocenyl grafted HTPB increases, onset decomposition temperature decreases. The impact and friction sensitivity data also envisage that sensitivity increases in comparison to base composition. The data on ballistic properties revealed that there is ca. 53 % increase in burning rate, while decrease in “n” value from 0.39 to 0.2 was obtained compared to base composition.  相似文献   

19.
In order to study the influence of temperature and strain‐rate on HTPB propellant fracture capability under impact loading conditions, a dynamic fracture experiment at different temperatures was carried out by using the cracked straight‐through Brazilian disc (CSTBD) specimen on the split Hopkinson pressure bar (SHPB), and the dynamic initiation fracture toughness of the HTPB propellant was obtained. Experimental results indicate that the proposed dynamic fracture testing for the HTPB propellant is effective. The dynamic initiation fracture toughness is obviously sensitive to temperature and strain‐rate, and its value increases with decreasing temperature and increasing strain rate, and a linearity relationship exists between the fracture toughness and the logarithm of the strain rate, and the linearity also increases with increasing loading rate. A master curve of quadratic function for the fracture toughness was obtained.  相似文献   

20.
As the base‐bleed projectile flies out of the muzzle, the environmental pressure in the base‐bleed combustion chamber suddenly decreases and AP/HTPB base‐bleed propellant suffers intense unsteady combustion. To further study the unsteady combustion characteristics of base‐bleed propellants, a semi‐closed bomb as was designed experimental device and transient depressurization conditions of the muzzle were simulated. Measurements of the transient combustion characteristics of the base‐bleed propellant under high depressurization rate were carried out by using a high speed digital camera system. In the experiments, the combustion chamber pressure of the semi‐closed bomb was controlled from 20 to 90 MPa and the depressurization rate was controlled from 400 to1.12×104 MPa s−1. The experimental results indicate that, the out‐of‐phase blowing effect is intense under rapid depressurization condition, leading to the reaction layer thickened. The thermal feedback to the solid surface decreases and thus the combustion reaction of gas phase is so difficult to maintain that it begins to extinguish. However, the thermal decomposition of the solid phase is still continuing and a yellow fog can be observed above the combustion chamber nozzle. Depending on the maximum pressure in the combustion chamber and depressurization rate, the transient combustion behavior of AP/HTPB base‐bleed propellant displays three patterns, i.e., automatic reignition, oscillating combustion (a critical type) and permanent extinguishment. Three unsteady combustion behaviors are preliminarily analyzed based on the thermal feedback. If the initial pressure in the combustion chamber before depressurization is larger or the depressurization rate is smaller, the base‐bleed propellant tends to automatically reignite earlier and the combustion process is more stable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号