首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 445 毫秒
1.
熊德元  刘雄民 《石油化工》2006,35(6):543-547
以A lC l3-SbC l3为催化体系,通过正交实验,对α/β-蒎烯阳离子共混聚合进行了研究。实验结果表明,在保持单体高转化率的同时,降低了聚合的反应速率,避免了由于反应过快而引起的聚合产物中低聚体含量高、数均相对分子质量下降的现象,有效提高了聚合物的软化点,降低了聚合物的色度。在优化工艺条件(聚合温度0℃,m(α-蒎烯)∶m(β-蒎烯)=7∶3,α-蒎烯、β-蒎烯和SbC l3的滴加速率均为4.0mL/m in,w(A lC l3)=3.0%,m(SbC l3)∶m(A lC l3)=0.50,保温时间8.0h)下,所制得的聚(α/β-蒎烯)树脂的色度(铁钴色)为3,收率为84.0%,软化点(环球法)为136.0℃,酸值(KOH)为0.82m g/g,皂化值(KOH)为0.98m g/g。  相似文献   

2.
α-蒎烯臭氧化-分解法制备蒎酮酸   总被引:3,自引:0,他引:3  
以松节油所得α-蒎烯为原料,进行臭氧化反应制备蒎酮酸。臭氧化在惰性溶剂中进行。经实验比较,以 醋酸为溶剂效果较好,m(α-蒎烯):m(醋酸)=1:3;臭氧化反应温度控制在10℃以下;氧化分解温度95℃; 分解时间2.5 h;催化剂为乙酸钴与乙酸锰的复合物,用量为α-蒎烯质量的0.1%;产率大于80%。  相似文献   

3.
以Pd/C为催化剂、正己烷为溶剂对软化点为138.0℃、加纳色号为3的α-蒎烯树脂进行加氢,通过正交实验确定了最佳的加氢工艺条件,并采用凝胶渗透色谱、紫外光谱、傅里叶变换红外光谱和臭氧化反应等方法对加氢得到的无色α-蒎烯树脂进行了表征。实验结果表明,在反应温度240℃、压力6.0MPa、Pd/C催化剂质量分数(基于α-蒎烯树脂)0.6%、加氢时间0.5h、搅拌转速600r/min的最佳条件下,加氢后的α-蒎烯树脂的加纳色号小于1,达到无色水平,软化点为136.0℃。表征结果显示,加氢后的无色α-蒎烯树脂的双键大部分被消除,同时大分子链没有断裂。  相似文献   

4.
以质量分数30%的过氧化氢溶液为氧化剂、甲酸为催化剂,结合蒸馏工艺脱除α-甲基萘中的甲基苯并噻吩,考察了甲酸和过氧化氢用量、反应温度、反应时间、原料中氮化物等因素对脱硫率的影响。实验结果表明,在反应温度为40~80℃时,升高反应温度有利于提高脱硫率;最佳反应条件为:温度70℃、n(HCOOH)∶n(S)=5.8、n(H2O2)∶n(S)=8.6、反应时间60min,此时脱硫率可达100.00%;原料中的氮化物会与甲酸形成络合物,降低脱硫率;利用α-甲基萘与反应产物之间较大的沸点差异,经过简单蒸馏,即可彻底去除反应中生成的噻吩砜或亚砜,精制后的α-甲基萘纯度提高了2%~3%,总收率大于95%,并由原来的淡黄色变为无色透明。  相似文献   

5.
以4,5-二氢-3-甲基-1-(4-氯-2-氟苯基)-1,2,4-三唑-5(1 H)酮的钾盐为原料,与一氯二氟甲烷进行N-烷基化反应合成了4,5-二氢-3-甲基-1-(4-氯-2-氟苯基)-4-二氟甲基-1,2,4-三唑-5(1 H)酮。研究了不同原料、碱性试剂用量、反应温度等因素对反应收率的影响,实验结果表明,最佳工艺条件为:n(钾盐)∶n(碳酸钾)=1∶2,m(钾盐)∶m(N-甲基吡咯烷酮)=1∶5,反应温度165℃,在此条件下,产物收率≥56%,质量分数≥95%。  相似文献   

6.
以1-癸烯、1-辛烯、1-十二烯及其混合烯烃为原料,采用Ziegler-Natta催化剂,通过两段反应温度结合模式制备高黏度聚α-烯烃(PAO)合成油,并研究了原料种类、反应温度、反应时间及催化剂用量对PAO收率和性能的影响。实验结果表明,最佳工艺条件为混合烯烃(1-辛烯与1-癸烯体积比为1)为原料,第一段于20℃反应8 h,第二段于80℃反应2 h,催化剂用量4%(w),n(Al):n(Ti)=3.5。此工艺条件下,PAO收率为91.01%,运动黏度(100℃)为42.03 mm~2/s,黏度指数为157,闪点为288℃,倾点为-44℃。在反应温度230℃、反应压力4.0 MPa、体积空速0.2 h~(-1)、氢油体积比300的条件下加氢精制,PAO加氢产品的运动黏度(100℃)为41.27 mm~2/s,黏度指数为154,闪点为285℃,倾点为-40℃,产品性能优于市售的PAO-40。  相似文献   

7.
以费-托蜡裂解产物120~170℃馏分为原料,采用银离子络合萃取法进行提纯精制;以精制后的混合α-烯烃为原料,BF_3为催化剂,正丁醇为引发剂制备聚α-烯烃(PAO)合成润滑油基础油。考察了反应压力、反应温度、反应时间和引发剂用量对PAO性能的影响。实验结果表明,精制后α-烯烃纯度由63.56%(w)提高到95.25%(w);在反应压力0.4 MPa、反应温度25℃、反应时间3 h、引发剂用量0.1%(w)的条件下,PAO的收率为97.16%,100℃的运动黏度为6.05 mm~2/s,黏度指数为146,倾点为-62℃,产物中三聚体和四聚体含量为70.45%(w),支化度为0.159 5。  相似文献   

8.
实验以氨基硫脲和丁二酸为原料,在多聚磷酸催化下合成了1,2-双(2-氨基-1,3,4-噻二唑-5-基)乙烷,考察了反应条件对收率的影响。最佳反应条件为:n(多聚磷酸)∶n(丁二酸)=2.1∶1,反应温度120℃,反应时间20h,n(丁二酸)∶n(氨基硫脲)=1∶2.2,收率74.6%。产物结构经元素分析、IR、1 H-NMR及ESI-MS等方法进行了确证。  相似文献   

9.
有机碱催化CO_2和1,2-丙二醇合成碳酸丙烯酯   总被引:2,自引:0,他引:2  
以有机碱为催化剂、乙睛为溶剂,研究了CO2和1,2-丙二醇(PG)合成碳酸丙烯酯(PC)的反应。在所选用的有机碱中,1,5,7-三氮杂双环[4,4,0]葵-5-烯(TBD)的催化活性最高。乙腈不仅作为溶剂还起到脱水剂的作用,通过乙腈水解,可除掉反应中生成的一部分水,打破热力学平衡,极大地提高了PG转化率和PC收率。以TBD为催化剂,优化了反应条件。最佳反应条件为:反应温度175℃,反应压力10M Pa,反应时间15h,n(TBD)∶n(PG)=0.025,n(CH3CN)∶n(PG)=2。在此条件下,PG转化率和PC收率分别为37.3%和22.5%。  相似文献   

10.
以活性炭为载体用浸渍法分别制备了不同负载量的硅钨杂多酸催化剂,考察了催化剂在α-蒎烯异构化中的催化性能,并用XRD、FT-IR、SEM、TG等手段对不同负载量催化剂的结构、形貌、酸种类、热稳定性、吸附性能等进行了表征。结果表明:硅钨杂多酸能较好的负载在活性炭表面,且保持了Keggin结构;硅钨杂多酸的负载量影响其酸中心的强度、吸附性能、活性和选择性,当负载量为60%时,催化剂具有较强的B酸中心和α-蒎烯解离吸附性能,异构化反应中α-蒎烯的转化率为95.58%,产物以α-松油烯为主。  相似文献   

11.
以FYX - 2G型高压搅拌釜为加氢反应器 ,测定了在不同搅拌器型式和搅拌转速下高压釜的持气量和反应效果 ,认识到α 蒎烯催化加氢是外扩散控制的反应 ,当搅拌转速为 6 0 0r/min时 ,基本上能消除外扩散的影响。考察了Raney镍和Pd/C催化剂、反应温度在 35 3~ 499K ,压力在 4 0~ 10MPa的条件下对α 蒎烯加氢转化率和选择性的影响 ,结果表明Raney镍更适宜于α 蒎烯催化加氢 ,其转化率随温度、压力增加而提高 ,但选择性下降。采用温度 35 3~ 433K、压力 4 0~ 7 0MPa的操作序列 ,克服了α 蒎烯加氢转化率与选择性互为逆向的缺点 ,缩短了反应时间 ,制得了顺反比高达 18 2∶1的蒎烷 ,并且发现加氢反应从温度 433K开始有副产物对烷生成 ,当温度超过 45 6K时 ,加氢过程还出现飞温现象。  相似文献   

12.
α-甲基丙烯酸十四酯-十六烯降凝剂的合成及其降凝效果   总被引:3,自引:2,他引:1  
用α-甲基丙烯酸和十四醇合成了α-甲基丙烯酸十四酯(TDMA);以甲苯为溶剂、过氧化苯甲酰(BPO)为引发剂,TDMA与十六烯(HE)共聚生成了降凝剂α-甲基丙烯酸十四酯-十六烯二元共聚物(AH);对TDMA和AH进行了红外光谱表征;考察了影响AH降凝效果的主要因素以及将AH与两种市售降凝剂分别复配后的降凝效果。实验结果表明,以在n(TDMA)∶n(HE)=6∶1、BPO用量(相对于单体TDMA和HE的质量分数)1.0%、甲苯用量(相对于单体TDMA和HE的质量分数)75%、聚合时间5h的条件下合成的AH为降凝剂,在AH用量(相对于基础油的质量分数)为0.5%时,AH的降凝效果最佳,可使燕山500SN、燕山200SN、河南、湖南和大庆5种基础油的凝点分别降低29,31,20,6,18℃;AH与市售降凝剂复配后,复配物对基础油的降凝效果基本优于单独使用市售降凝剂的降凝效果。  相似文献   

13.
KF/K_2CO_3/γ-Al_2O_3催化合成α-呋喃丙烯酸   总被引:1,自引:0,他引:1  
实验以呋喃甲醛和丙二酸为原料,KF/K2CO3/γ-Al2O3为催化剂,经Knoevenagel缩合反应,在无溶剂条件下催化合成了α-呋喃丙烯酸。考察了催化剂用量、呋喃甲醛与丙二酸摩尔比和反应时间对α-呋喃丙烯酸收率的影响。实验结果表明,其最佳工艺条件为:呋喃甲醛用量12.5 mL(0.15 mol),n(呋喃甲醛)∶n(丙二酸)=1.0∶1.3,KF/K2CO3/γ-Al2O3用量2.0 g(含KF 3.75 mmol),反应时间60 min。α-呋喃丙烯酸的收率达93%以上。  相似文献   

14.
在对氨基苯磺酸催化作用下,以10-十一烯醛与乙二醇为原料合成了10-十一烯醛缩乙二醇。考察了醛醇摩尔配比、反应时间、催化剂用量及其重复使用性能等因素对反应的影响。较优反应条件为:10-十一烯醛用量0.1 mol,n(10-十一烯醛)∶n(乙二醇)=1∶1.2,催化剂用量0.5 g,环己烷带水剂12 mL,回流反应2.0 h,10-十一烯醛缩乙二醇的收率最高可达92.4%。  相似文献   

15.
以对氟硝基苯为原料,N-溴代丁二酰亚胺(NBS)为溴化试剂,在碘催化下发生溴化反应,再通过亲核取代反应制备得到2-溴-4-硝基苯甲醚,收率44.3%。考察了催化剂用量、反应温度和投料比对溴化、醚化反应收率的影响。适宜的反应条件为:溴化、醚化反应温度分别为20℃和50℃;m(对氟硝基苯)∶m(碘)=1∶0.015,n(对氟硝基苯)∶n(NBS)=1∶1.15,n(3-溴-4-氟硝基苯)∶n(甲醇钠)=1∶1.1。  相似文献   

16.
以2-甲基-8-羟基喹啉为原料,在酸性条件下与水合氯醛发生缩合反应生成2-甲基-5-(α-羟基-β-三氯)-8-羟基喹啉(Ⅰ)和2-甲基-8-羟基喹啉-5-磺酸(Ⅱ),Ⅰ在碱性条件下水解生成2-甲基-8-羟基喹啉-5-甲醛(Ⅲ)。合成Ⅰ的最佳反应条件为:n(2-甲基-8-羟基喹啉)∶n(水合氯醛)∶n(硫酸)=1∶1.2∶4.6,反应温度为80℃,反应时间为10h,产物收率为54.8%;合成Ⅲ的最佳反应条件为:n(Ⅰ)∶n(KOH)=1∶5.1,回流反应7h,收率为26.9%。产物经熔点仪、元素分析仪、液-质联用仪、红外光谱仪及核磁共振氢谱等进行表征。  相似文献   

17.
以2-氯吡啶和苯胺为原料,经缩合、硫粉环合制得1-杂氮吩噻嗪。较佳合成工艺条件为:n(2-氯吡啶)∶n(苯胺)=1∶1,反应温度180℃,2-苯胺基吡啶收率95.6%,纯度99.5%(HPLC);二苯醚为溶剂,碘为催化剂,n(2-苯胺基吡啶)∶n(硫粉)=1∶1.8,m(2-苯胺基吡啶)∶m(二苯醚)∶m(碘)=1∶1∶0.05,反应温度270℃,1-杂氮吩噻嗪收率71.3%,纯度99.2%(HPLC);总收率68.2%。产物结构经IR、1 H NMR确证。  相似文献   

18.
为研究焙烧对HY沸石催化α-蒎烯的影响,在400~1 000℃焙烧HY沸石,制备了试样。采用XRD、N2-BET、Py-IR对HY沸石进行表征,研究了400~1 000℃焙烧后HY沸石的晶体结晶度、比表面积、孔径、孔容及酸含量;通过α-蒎烯异构反应对焙烧的HY沸石催化效果进行评价,分析了HY型沸石的晶体结构和酸含量与α-蒎烯异构反应的转化率和产物莰烯、苧烯的选择性的关系。结果表明HY沸石分子筛在焙烧温度700℃以上具有较好的活性,焙烧温度至800℃HY沸石分子筛催化剂活性最好,焙烧温度至900℃分子筛催化剂晶体结构部分崩塌,HY沸石分子筛焙烧温度应在700~900℃;400~800℃焙烧HY沸石分子筛,对其比表面积、孔径、孔容影响不明显,高温焙烧影响HY沸石分子筛催化剂中酸中心数量,温度升高酸中心数量减少;HY沸石分子筛催化剂中催化活性中心数量对产物选择性有较大影响,当其酸催化活性中心数量适当时,异构反应才能获得较高的莰烯选择性,而酸催化活性中心数量较少,更有利于苧烯的生成;反应温度130℃,反应8h,试样700Y03转化率达到95.86%,主产物莰烯选择性为47.44%、苧烯选择性为28.89%。  相似文献   

19.
《石油化工》2016,45(10):1198
采用新型固体超强碱3%(w)K/K_2CO_3催化丙烯二聚合成4-甲基-1-戊烯(4MP1),考察了反应温度、反应时间、丙烯进料量、m(丙烯)∶m(催化剂)及催化剂重复使用对反应的影响,研究了催化剂的异构化活性。实验结果表明,在150℃、20 h、丙烯进料量27 g、m(丙烯)∶m(催化剂)=2.7条件下,丙烯转化率为43%,二聚产物的选择性为99.3%,4MP1的选择性为86.3%,反应诱导期为3.3 h,丙烯平均反应速率为0.062 g/(g·h);催化剂可重复使用4次,在重复使用过程中,丙烯转化率、二聚产物的选择性和4MP1的选择性均缓慢下降,反应诱导时间逐渐延长。催化剂的异构化活性占二聚活性的26%,异构化活性较高。  相似文献   

20.
实验以3,5-二烷基-4-羟基苯甲醛(烷基为甲基、异丙基和叔丁基)和NH2OH.HCl为原料,在HCOOH、HOAc和DMF 3种溶剂中一步法合成相应的苯甲腈。考察了原料配比、反应温度等对产物收率的影响。结果表明,合成3,5-二甲基-4-羟基苯甲腈的最优条件为:醛用量0.16 mol,n(醛)∶n(羟胺)=1∶1.2,DMF用量80 mL,温度105℃,反应6 h,收率93.5%;合成3,5-二异丙基-4-羟基苯甲腈的较优条件为:n(醛)∶n(羟胺)=1∶1.2,DMF用量100 mL,温度105~110℃,反应6 h,收率88.0%;合成3,5-二叔丁基-4-羟基苯甲腈的较优条件为:n(醛)∶n(羟胺)=1∶1.2,HOAc用量100 mL,温度105~110℃,反应6 h,收率99%以上。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号