首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
The carbonization of magnesium oxide particles by CO2 was investigated using a stirring mill reactor. The effects of the system temperature, stirring rotation speed, influx rate of CO2 and initial diameter of the magnesium oxide particles on the carbonization process were determined, The results show that the system temperature and the stirring rotation speed are the most significant influencing factors on the carbonization rate. The determi-nation of critical decomposition temperature (CDT) gives the maximum carbonization rate with other conditions fixed. A theoretical model involving mass transfer and reaction kinetics was presented for the carbonization process. The apparent activation energy was calculated to be 32.8kJ·mol-1. The carbonization process is co-controlled by diffusive mass transfer and chemical reaction. The model fits well with the experimental results.  相似文献   

2.
The chemical kinetics of the monoesterification between terephthalic acid (TPA) and 1,4-butanediol (BDO) catalyzed by a metallo-organic compound was studied using the initial rate method. The experiments were carried out in the temperature range of 463-483 K, and butylhydroxyoxo-stannane (BuSnOOH) and tetrabutyl titanate [Ti(OBu)4] were used as catalyst respectively. The initial rates of the reaction catalyzed by BuSnOOH or Ti(OBu)4 were measured at a series of initial concentrations of BDO (or TPA) with the concentration of TPA (or BDO) kept constant. The reaction orders of reagents were determined by the initial rate method. The results indicate that the reaction order for TPA is related with the species of catalyst and it is 2 and 0.7 for BuSnOOH and Ti(OBu)4 respectively. However, the order for BDO is the same 0.9 for the two catalysts. Furthermore, the effects of temperature and catalyst concentration are investigated, and the activation energies and the reaction rate constants for the two catalysts were deter-mined.  相似文献   

3.
The oxidative desulfurization of a real refinery feedstock (i.e., non-hydrotreated kerosene with total sulfur mass content of 0.16%) with a mixture of hydrogen peroxide and acetic acid was studied. The influences of various operating parameters including reaction temperature (T), acid to sulfur molar ratio (nacid/nS), and oxidant to sulfur molar ratio (nO/nS) on the sulfur removal of kerosene were investigated. The results revealed that an increase in the reaction temperature (T) and nacid/nS enhances the sulfur removal. Moreover, there is an optimum nO/nS related to the reaction temperature and the best sulfur removal could be obtained at nO/nS 8 and 23 for the reaction temperatures of 25 and 60C, respectively. The maximum observed sulfur removal in the present oxidative desulfurization system was 83.3%.  相似文献   

4.
乙酸与甲醇的催化酯化   总被引:3,自引:0,他引:3       下载免费PDF全文
Esterification of methyl alcohol with acetic acid catalysed by Amberlyst-15 (cation-exchange resin) was carried out in a batch reactor in the temperature ranging between 318-338 K, at atmospheric pressure. The reaction rate increased with increase in catalyst concentration and reaction temperature, but decreased with an increase in water concentration. Stirrer speed had virtually no effect on the rate under the experimental conditions. The rate data were correlated with a second-order kinetic model based on homogeneous reaction. The apparent activation energy was found to be 22.9kJmol-1 for the formation of methyl acetate. The methyl acetate production was carried out as batch and continuous in a packed bed reactive distillation column with high purity methyl acetate produced.  相似文献   

5.
低品位铌钽矿高浓碱性介质浸出过程动力学研究   总被引:1,自引:0,他引:1  
The leaching kinetics of niobium from a low-gr~te niobium-tantalum ore by concentrated KOH solution under atmospheric pressure has been studied. Significant effects of reaction temperature, KOH concentration,stirring speed, particle size and mass ratio of alkali-to-ore on the dissolution rate of niobium were examined. The experimental data of the leaching rates and the observed effects of the relevant operating variables were well interpreted with a shrinking core model under diffusion control. By using the Arrhenius expression, the apparent activation energy for the dissolution of niobium was evaluated. Finally, on the base of the shrinking core model, the rate equation was established.  相似文献   

6.
Chinese rice wine making is a typical simultaneous saccharification and fermentation(SSF) process.During the fermentation process,temperature is one of the key parameters which decide the quality of Chinese rice wine.To optimize the SSF process for Chinese rice wine brewing,the effects of temperature on the kinetic parameters of yeast growth and ethanol production at various temperatures were determined in batch cultures using a mathematical model.The kinetic parameters as a function of temperature were evaluated using the software Origin8.0.Combing these functions with the mathematical model,an appropriate form of the model equations for the SSF considering the effects of temperature were developed.The kinetic parameters were found to fit the experimental data satisfactorily with the developed temperature-dependent model.The temperature profile for maximizing the ethanol production for rice wine fermentation was determined by genetic algorithm.The optimum temperature profile began at a low temperature of 26 °C up to 30 h.The operating temperature increased rapidly to 31.9 °C,and then decreased slowly to 18 °C at 65 h.Thereafter,the temperature was maintained at18 °C until the end of fermentation.A maximum ethanol production of 89.3 g·L~(-1)was attained.Conceivably,our model would facilitate the improvement of Chinese rice wine production at the industrial scale.  相似文献   

7.
The kinetics of H_2S removal by zinc oxide desulfurizer was studied through thermogravimetricanalysis.The experimental results show that desulfurization rate was controlled,at high temperatureand low conversion,by the chemical reaction rate,and at low temperature and high conversion by thegrain diffusion rate.The reaction is first order with respect to H_2S concentration in the differentcontrolled stages.The kinetic behavior can be modeled through the employment of the shrinking coremodel.The values of the model parameters were determined.The variation tendencies with temperatureand concentration of H_2S at the controlled stages were discussed.  相似文献   

8.
In this work, Fe/Ni nanoparticles were produced through Fe(II) and Ni(II) reduction by NaBH_4 and they were stabilized by a kind of prepared granular adsorbent(Fe/Ni@PGA). Fe/Ni@PGA as an environment-friendly activator was used to activate persulfate(PS) for the removal of ciprofloxacin from aqueous solution. Fe/Ni@PGA was systematically characterized via Brunauer–Emmett–Teller(BET) method, X-ray diffraction(XRD), scanning electron microscopy(SEM), and Fourier transform infrared spectroscopy(FTIR). The effects of PS concentration, initial solution pH, Fe/Ni@PGA dosage, initial ciprofloxacin concentration, reaction temperature, anions, and natural organic matters on the removal of ciprofloxacin by Fe/Ni@PGA/PS were analyzed. The removal efficiency of ciprofloxacin by Fe/Ni@PGA/PS was 93.24% under an initial pH of 3.0, PS concentration of 10 mM, Fe/Ni@PGA dosage of 0.1 g, and reaction temperature of 30℃. Fe/Ni@PGA could still exhibit high catalytic activity after nine cycles of regeneration. The removal mechanisms for ciprofloxacin by the Fe/Ni@PGA/PS system were proposed. In summary, the Fe/Ni@PGA/PS system could be applied as a promising technology for ciprofloxacin removal.  相似文献   

9.
Mass transfer usually affects the rate of chemical reactions in coal.The effect of internal diffusion on char gasification with CO2 in the temperature range from 1123 K to 1273 K was investigated via thermo-gravimetric analysis and assessment of char morphology features.The results revealed that the effect of internal diffusion on the initial reaction rate was more significant with an increase of particle size,due to the concentration gradient of the gasification agent within the solid particles.In the early stage of gasification,the generation of new micropores and the opening of closed pores led to an increase in specific surface area.As the reaction proceeded,the openings were gradually expanded and the specific surface area continued to increase.However,with further reaction,disappearance of edge pores,melting and collapse of the pore structure led to a decrease in specific surface area.The intrinsic activation energy and reaction order based on the nth-order model were 157.67 kJ?mol?1 and 0.36,respectively.Thus,temperature zones corresponding to chemical reaction and diffusion control were identified.Moreover,the calculated effectiveness factor provided a quantitative estimation of internal diffusion in the initial stage.  相似文献   

10.
Leaching kinetics of calcium vanadate by Na2CO3 solution was studied. Kinetic equation was established according to the variation of VO3-concentration with time during the leaching process. The influences of initial pH value and stirring speed on reaction rate constant were examined and the corresponding apparent activation energy was calculated. The results indicate that the leaching process is a 0.68 order reaction, and the reaction rate constant 8.64×10-6 mol/(L-s). It increases with the increase of pH value and stirring speed. And the dissolution rate of calcium vanadate also increases. The apparent activation energy is 38.98 kJ/mol, and temperature has great influence on the leaching rate of calcium vanadate.  相似文献   

11.
Pervaporation has attracted considerable interest owing to its potential application in recovering biobutanol from biomass acetone-butanol-ethanol (ABE) fermentation broth. In this study, butanol was recovered from its aqueous solution using a polydimethylsiloxane (PDMS)/ceramic composite pervaporation membrane. The effects of operating temperature, feed concentration, feed flow rate and operating time on the membrane pervaporation per-formance were investigated. It was found that with the increase of temperature or butanol concentration in the feed, the total flux through the membrane increased while the separation factor decreased slightly. As the feed flow rate increased, the total flux increased gradually while the separation factor changed little. At 40 C and 1% (by mass) butanol in the feed, the total flux and separation factor of the membrane reached 457.4 g•m2•h1 and 26.1, respec-tively. The membrane with high flux is suitable for recovering butanol from ABE fermentation broth.  相似文献   

12.
海藻酸镧颗粒除氟研究:吸附剂物性和吸附机理   总被引:1,自引:0,他引:1       下载免费PDF全文
Lanthanum alginate bead is a new, highly active adsorbent. In the present study, we investigated its ad- sorption performance and its adsorption mechanism. The adsorption isotherm for fluoride onto lanthanum alginate b ead fits the Langmuir model well, and the maximum adsorption capacity is 197.2 mg·g-1. X-ray diffraction shows the amorphous nature of lanthanum alginate bead, which allows for better accessibility to fluoride and thus better activity. Infrared spectra of lanthanum alginate bead before and after adsorption confirm its stable skeletal structure. Scanning electron microscopy shows that the dense surface structure of the adsorbent appear cracks after adsorption. T he adsorption mechanism of lanthanum alginate bead is considered as an ion exchange between F- and Cl- or OH-, as verified from the adsorbent and the solution by pH effect, energy dispersive X-ray, and ion chromatography.  相似文献   

13.
The solubilities of the quinary system Na + ,K + ,Mg 2+ //Cl ,NO 3 -H2O and its two quaternary subsystems, Na + ,K + ,Mg 2+ //NO 3 -H2O and K + ,Mg 2+ //Cl ,NO 3 -H2O,were studied by isothermal method at 25°C and their phase diagrams were plotted.In the equilibrium phase diagram of quaternary system Na + ,K + ,Mg 2+ //NO 3 -H2O, there are one invariant point,three univariant curves and three regions of crystallization with one salt:NaNO3, KNO3 and Mg(NO3)2·6H2O.In the equilibrium phase diagram of quaternary system K + ,Mg 2+ //Cl ,NO 3 -H2O,there are three invariant points,seven univariant curves and five regions of crystallization with one salt:KNO3,KCl, Mg(NO3)2·6H2O,MgCl2·6H2O and KCl·MgCl2·6H2O.In the equilibrium phase diagram of the quinary system Na + , K + ,Mg 2+ //Cl ,NO 3 -H2O,there are four invariant points,and seven regions of crystallization with one salt:NaCl, KCl,NaNO3,KCl·MgCl2·6H2O,KNO3,MgCl2·6H2O and Mg(NO3)2·6H2O.  相似文献   

14.
Considering limited success in target-hitting discharge from alcohol industry, our attention was directed toward a recycling use of distillery spentwash (DS) in cassava bioethanol production by using a two-stage up-flow anaerobic sludge blanket bioremediation (TS-UASBB). With the TS-UASBB, , COD, N and P in the effluent from the DS degraded significantly and their concentrations were kept at 0.2 g•L1, 2.0 g•L1, 1.0 g•L1 and 15 mg•L1, respectively, in 13 batch processes for water-recycled ethanol fermentation. With the effluent used directly as dilution water, no heat-resistant bacteria were found alive. The thirteen-batch ethanol production individually achieved 10% after 48 h fermentation. The starch utilization ratio and total sugar consumption were 90% and 99.5%, respectively. The novel water-recycled bioethanol production process with ethanol fermentation and TS-UASBB has a considerable potential in other starchy and cellulosic ethanol production.  相似文献   

15.
A lab-scale integrated treatment system including the novel sequence bio-ecological process (SBEP) and biological aerated filter (BAF) for a sewage mixture (chemistry laboratory wastewater and domestic sewage) was presented in this paper. The main objective of the study was to test the contribution of artificial aeration, recir-culation ratio and mass concentration of steel slag on pollutant removal in winter when the plants are dormant. It had been shown that SBEP and BAF play different roles in removing contaminants from wastewater. During the airflow experiment, the removal efficiency of COD and TP in SBEP was higher than that in BAF, whereas BAF can compensate for the deficiency of SBEP where no significant improvement on ammonium nitrogen removal is ob-served. Yet, the removal efficiencies of COD, TP and -N in SBEP could be improved apparently when differ-ent recirculation ratio or various mass concentration of steel were applied. Especially, when the airflow of 0.06 L·h 1, the recirculation ratio rate of 80% and the mass concentration of steel of 2.2-2.4 g·L 1 were applied, the highest efficiency of 94.6%, 77.9% and 80.7% for COD, TP and -N were achieved, respectively. The inte-grated treatment system of SBEP and BAF was proved to be an effective wastewater treatment technique and a bet-ter alternative to treat domestic sewage.  相似文献   

16.
The adsorption equilibrium of a fluoride solution on 1-2 mm granular activated alumina modified by Fe2(SO4)3 solution was investigated. The experiments were conducted using a wide range of initial fluoride concentrations (0.5 to 180 mg•L1 at pH ~7.0) and an adsorbent dose of 1.0 g•L1. The application of Langmuir and Freundlich adsorption isotherm models (linear and nonlinear forms) generally showed that a single Langmuir or Freundlich equation cannot fit the entire concentration gap. Experimental data on low equilibrium concentrations (0.1 to 5.0 mg•L1) was in line with both Langmuir and Freundlich isotherm models, whereas that of high equilibrium concentrations (5.0 to 150 mg•L1) was more in line with the Freundlich isotherm model. A new Langmuir- Freundlich function was used for the entire concentration gap, as well as for low and high concentrations.  相似文献   

17.
Molybdenum disulfide nanoflakes were synthesized by a simple hydrothermal process using sodium molybdate and thiourea as reactants at a relatively low temperature. X-ray diffraction(XRD) and transmission elec-tron microscopy(TEM) indicate that the samples have the structure of 2H-MoS2 and the morphology of nanoflakes with the average thickness around 5-10 nm. The results of electrochemical properties indicate that the morphology and size of MoS2 particles have effects on their capacity when they are used as the anode for lithium ion battery. The as-prepared MoS2 samples have high reversible discharge capacity up to 994.6 mA·h·g-1 for the MoS2-1 elec-trode and 930.1 mA·h·g-1 for the MoS2-2 electrode and show excellent cycling performances. The MoS2-1 electrode has a better cycling stability than the MoS2-2 electrode due to their difference in the uniformity of the samples.  相似文献   

18.
The study is focused on modeling of separation process and optimization.An adsorption separation process is simulated.The surfactin production process by Bacillus subtilis ATCC 21332 followed by surfactin adsorption in a fixed-bed column packed with commercial active carbon is studied in laboratory.The adsorption column achieves high surfactin recovery(94%)by up-flow methanol elution at 25°C.The adsorption column is simulated with a complex one-dimensional plug flow dispersion model coupled with nonlinear adsorption equilibrium,based on the assumption that the adsorption of surfactin is monomolecular layer and no micelle is formed.The molecular diffusion coefficient of surfactin in water solution with electric neutrality is estimated to be 0.428×10 -5 cm 2 ·s -1 by molecular dynamics simulation.The model developed can describe the complex interplay of adsorption kinetics,fluid dynamics,and mass-transfer phenomena based on the assumption of no radial temperature and concentration gradients,and is of adequate precision.The work involved in this paper is valuable for the optimization of the production process of surfactin.  相似文献   

19.
The effects of L-cysteine concentration on biohydrogen production by Enterobacterium Bacterium M580 were investigated in batch cultivation.The experimental results showed that L-cysteine could enhance the cell growth,hydrogen production rate and hydrogen yield when its concentration was less than 500 mg·L-1,while it had negative effects when its concentration was higher than 500 mg·L-1.The hydrogen production was the highest 1.29 mol·mol-1(H2/glucose) when 300 mg·L-1L-cysteine was added into the culture,and the yield was 9.4% higher than that in the control.The oxidation-reduction potential(ORP) ,which was influenced by L-cysteine,also affected hydrogen production.The ORP values were in the range-300 mV to-150 mV when the L-cysteine concentration was higher than 500 mg·L-1.Although the ORP in this range was favorable for hydrogen production,it was not suitable for the biomass growth.Hence,less hydrogen was produced.When the L-cysteine concentration was lower than 500 mg·L-1,the ORP was more suitable for both biomass growth and hydrogen production.In addition,at least 91%glucose was consumed when L-cysteine was added to the culture media,compared to the 97.37% consumption without L-cysteine added.  相似文献   

20.
Borohydrides present interesting options for the electrochemical power generation acting either as hydrogen source or anodic fuel for direct borohydride fuel cells(DBFC).In this work,Mg-Ni composite synthesized by mechanically alloying method,used as the catalyst for the hydrolysis of borohydride,has been investigated.Co-doping treatment has been carried out for the purpose of improving the hydrolysis rate further.The as-prepared and Co-doped Mg-Ni composites with low cost showed high catalytic activity to the hydrolysis of borohydride for hydrogen generation.After Co-doping,the hydrogen generation rate was around 280 ml·g-1·min-1.Borohydride would be a promising hydrogen source for fuel cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号