首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.LGL1780Q液晶显示器DC/DC变换器电路分析LCLl780Q液晶显示器DC/DC变换器电路如图2所示。(1)5V电压产生电路5V电压产生电路以U801(MPl583DN)为核心构成。MPl583DN是输出电流为3A的开关型DC/DC变  相似文献   

2.
DC/DC变换器电路如图1所示(见9~10页)。DC/DC变换器输出的电压去向如图2所示(见11页)。(1)U7203(APl50l—33)和外围电路组成开关型DC/DC变换器,可将①脚输入的12V电压转换为+3.3VSB电压,从②脚输出;U7102的⑤脚为输出使能端,⑤脚为低电平时,②脚输出正常,当⑤脚为高电  相似文献   

3.
DC/DC变换器电路如图1所示(图见下页)。DC/DC变换器输出的电压去向如图2所示(图见下页)。U7102(AICl596-33PM5)和外围电路组成开关型DC/DC变换器,可将①脚输入的+24V电压转换为+3V3STBY电压,从②脚输出。U7102的⑤脚为输出使能端,⑤脚为低电平时,②脚输出正常;当⑤脚为高电平时,  相似文献   

4.
<正>液晶显示器开关电源一般输出12V电压(有些为14V、18V等),而液晶显示器的驱动板(主板)、液晶面板等需要的电压则较低(一般为3.3V以下),因此,需要进行直流变换,这项工作由液晶显示器内的DC/DC(直流/直流)变换器完成。目前,液晶显示器所采用的DC/DC变换器主要有  相似文献   

5.
<正>③实际电路中,电感升压式DC/DC变换器型号很多,这里只列举一例。图7所示是电感升压式DC/DC变换器NCP5006的外形图和内部电路框图。NCP5006的①脚为电压输出端,②脚为接地端,③脚误差反馈输入端,④脚为输出使能端(高电平使能,即该脚为高电平时,①脚才有输出),⑤脚为电压输入  相似文献   

6.
在主开关电源输出的直流电压(12V、18V、24V等)电压正常的情况下,DC/DC直流变换电路直接决定着液晶彩电的正常工作与否。液晶彩电中,DC/DC直流变换电路一般用来产生5V、3.3V、2.5V、1.8V等电压,为液晶彩电小信号处理电路供电。当这些供  相似文献   

7.
对适用于航天飞行器设备的高可靠超低输入电压DC/DC变换器技术进行了研究,设计了一种输入电压最低1.5V的DC/DC变换器电路.其中低压启动电路给PWM在启动时供电后通过自持电路供电,主电路采用单端正激拓扑.  相似文献   

8.
针对传统Z源DC/DC变换器存在的输入电流不连续、输出电压增益不够高和功率器件电压应力较高等不足,利用开关电感和开关电容技术,提出了一种混合开关高增益DC/DC变换器。该变换器主电路中只用到1个储能电容,结构简单,与现有典型的高增益阻抗源DC/DC变换器相比,所提出的混合开关电感和开关电容的DC/DC变换器可以实现更高的输出电压增益,同时电容和开关器件的电压应力较低。详细分析了所提变换器的工作原理,通过在实验室中所建立的输入电压16~40 V、输出电压26~107 V和输出功率7~114 W的原型验证了其性能。  相似文献   

9.
康佳P2901型大屏幕彩电的保护电路如图1所示,由行输出级过流保护、显像管束电流保护等电路组成。故障现象1:开机后三无,指示灯亮。分析检修:首先测量电源+B电压为50V,说明彩电可能进入待机或保护状态。测量微处理器CPU@脚电压为高电平,有开机指令,测最可控硅V906的控制极电压为0.7V,由此可见故障系保护电路启动所致。  相似文献   

10.
②U802内部电路框图如图3所示,内部含有两个变换器,前端是一个用于PFC(功率因素校正)电路的变换器,后面是主电源DC/DC变换器;内部电路包括:启动控制、振荡电路、误差放大电路、PFC电路、过电压/欠电压保护电路、过电流保护电路、过热保护电路、PFC驱动电路和开关管QS01等。STR-E1565引脚功能和对地参考电压见表1所示。  相似文献   

11.
将传统的L型电流输入隔离型DC/DC变换器与一种DCM(Diode-Capacitor Multiplier)电压增益单元相结合,提出了一种新型ZVS隔离型高增益DC/DC变换器。在继承传统L型电流输入隔离型DC/DC变换器输入电流纹波小、变压器匝数比低等优点的基础上,所提变换器可通过调节DCM增益单元数来调节变换器的输入输出增益比;通过有源箝位电路和漏感的结合,开关均实现了零电压开通,二极管均实现了零电流关断,二极管的反向恢复损耗得到了抑制;借助于所提DCM增益单元,二极管的电压应力以及变压器的绝缘等级得到了有效降低;所有二极管的电压、电流应力均相等,便于散热设计。对变换器的工作原理和性能特点进行了理论分析,并建立了一台输入24 V、输出400 V、功率为200 W的实验样机。实验测试样机最高效率可达95%,验证了理论分析的有效性和正确性。  相似文献   

12.
提出了一种L-R复合型桥式DC/DC变换器。该变换器在传统半桥LLC谐振变换器的基础上,仅增加一组L桥臂,有高、低2种电压增益模式。在高电压增益模式,采用脉冲宽度调制,通过L桥臂对电感线性储能,获得了比传统LLC谐振变换器更高的电压增益,具有更宽的输出电压范围,且电压增益受励磁电感影响小,电路工作无回馈电流。在低电压增益模式,采用脉冲频率调制,电压增益特性与传统LLC谐振变换器接近,但有更小的回馈电流和循环电流。详细分析了所提拓扑2种电压增益模式的工作原理,推导出增益公式,并与传统拓扑进行对比。最后搭建了一台输入电压为220 V、输出电压为100~160 V的实验样机,实验结果验证了理论分析的正确性。  相似文献   

13.
正(1)OZ9938内部电路OZ9938的内部电路框图,如图4所示。(2)背光灯开启电路电源板输出的+14.5V电压VCC-Inverter送入逆变器电路,然后分为两路:一路直接送给高压形成电路Q701~Q704;另一路经Q708、ZD703组成的稳压电路产生5V的VDD-1电压,送给U702振荡激励控制电路和半桥转全桥输出电路U701,为逆变器电路提供电源。遥控开机后,主板微处理器输出的B/LOn/Off逆变器高电平开启指令从连接器XS952的③脚输入逆  相似文献   

14.
变频器谐波抑制方法及测量   总被引:4,自引:0,他引:4  
张选正 《电气时代》2004,(11):136-139
变频器产生谐波的原因众所周知,目前低压变频器(≤700V)的主电路都选用交-直-交形式,且是电压型,如图1所示。它有整流部分AD/DC及逆变部分DC/AC,电容器C接在P N-。它的输入及输出电压、电流波形见图2。及输出电压、电流波形见图2。AD/DC直流逆变成交流DC/AC直流DCP 交流任意可调频率R交流U·VWSMT50HzIpcN-交流变成直流制动图1交直交电压型变频器主电路及输出电流波形主回路电源(输入)端主回路电源(输出)端主电路电压波形电流波形电压波形电流波形直流输出部分频率P -N图2输入部分:电压主波形为正弦波,但电流波形为非正弦波,…  相似文献   

15.
2.过流保护电路+12V过流保护电路由运算放大器U7B及其外围电路组成;+24V过流保护电路由U7A及其外围电路组成,对主开关电源输出的+12V或+24V电流进行检测。副电源输出的+30VSB电压:一是通过R93降压、ZD6稳压后,向U7的⑧脚提供工作电压;二是通过U10稳压后,经R83、R85、R82分压向U7B的⑥脚提供  相似文献   

16.
车载辅助DC/DC变换器设计   总被引:2,自引:2,他引:0       下载免费PDF全文
李亚顺  杨海涛  徐德鸿  陈敏 《电源学报》2013,11(4):37-42,87
设计了一种以交错并联Boost变换器和LLC变换电路构成两级型的辅助DC/DC变换器。详细给出两级DC/DC变换器的设计方法,针对宽输入电压范围200-375 V,输出电压为12 V,制作实验样机进行验证。  相似文献   

17.
采用有源PFC工作原理实现了一种升压型DC/DC变换器模块。作为空间电源完成由蓄电池输出电压50 ̄90V范围到稳定的128V输出,所采用的核心控制芯片为L4981A。该变换器的设计采用了双闭环控制,其特点是采用电压误差放大器环节实现输出电压稳定,采用电流环误差放大器环节实现输入电流跟踪输入电压且连续。试验结果表明,该变换器的输入电流连续,输出电压精度高,负载调整率高,电压调整率高,纹波电压较低,EMI强度较低,输出功率达到1.5kW。  相似文献   

18.
在液晶电视中,电源电路输出的各路电压均较低(+5V、+12V或+24V),不能满足高频调谐器所需调谐电压的要求(+33V)。为此,在调谐电压供电电路中引入了微功率DC/DC(直流/直流)升压变换器其中,LT1615/LT1615-1微功率增强型DC/DC升压变换器最为常见。  相似文献   

19.
2.稳压、待机与保护电路该机芯的稳压、待机及保护控制电路在开关电源的次级,如图5所示。(l)稳压控制电路稳压控制电路主要由Q883、D862组成,Q883内含取样、基准、误差放大电路。如果主输出电压高于115V,则经Q883取样及误差放大后,Q883的输出使光电管D862的①、②脚内接发光二极管的电流增大,于是D862的④、③脚内接光敏三极管的电流也增大,即从STR—Z2152的⑤脚流出来的电流增大,所以输出主电压将降回到+115V标准值。  相似文献   

20.
提出一种用于DC/DC变换器的数字自适应电压定位(Adaptive Voltage Position,简称AVP)控制器,与一般的控制器相比,它能让变换器使用更小的输出电容,因此可有效降低成本.控制器用现场可编程门阵列(Field Programmable Gate Array,简称FPGA)实现.变换器的开关频率为1MHz,输入电压为12V,输出电压可调节范围为0.875~1.875 V.当负载在0.2~10 A之间突变时,输出电压的变化为40mV.实验结果证明了设计的正确性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号