首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 597 毫秒
1.
通过测试新老混凝土粘结的劈拉强度、抗弯强度、抗剪强度,研究了硅灰和聚丙烯纤维单掺、复掺对新老混凝土粘结性能的影响,分析了硅灰和聚丙烯纤维对新老混凝土粘结性能的作用机理。结果表明,硅灰掺量为胶凝材料质量的9%,聚丙烯纤维掺量为0.6 kg/m3,28 d龄期时,新老混凝土粘结效果最好,粘结劈裂抗拉强度为2.36 MPa、抗弯强度为5.79 MPa、抗剪强度为5.11MPa。硅灰聚丙烯纤维净浆界面剂适用于混凝土结构修补。  相似文献   

2.
《混凝土》2014,(7)
主要研究了不同掺量的聚丙烯纤维对珊瑚混凝土的立方体抗压强度、劈裂抗拉强度和抗折强度、弹性模量的影响,对比没有掺入纤维与掺入纤维后珊瑚混凝土的破坏形态异同。试验结果为:聚丙烯纤维的加入使抗压、劈裂抗拉强度以及抗折强度都得到不同程度的提高,在一定范围内,当纤维掺量为2kg/m3时,抗压与劈裂抗拉强度增长率分别提高6.3%和16.5%,抗折强度最高达到4.5MPa,并且聚丙烯对珊瑚混凝土劈裂抗拉强度增强效果比抗压强度显著。聚丙烯纤维珊瑚混凝土弹性模量值低于普通混凝土,却高于轻骨料混凝土。  相似文献   

3.
硅灰对剑麻纤维珊瑚混凝土的影响   总被引:1,自引:0,他引:1  
为研究硅灰对剑麻纤维增强珊瑚混凝土耐久性的影响,通过人工加速老化试验方法测定试块的立方体抗压强度值与劈裂抗拉强度值,探索硅灰抑制剑麻纤维在砂浆中老化的机理,为剑麻纤维增强珊瑚混凝土其它性能及应用提供参考。试验结果表明:试件的立方体抗压强度在试验前后没有发生明显变化;未掺入硅灰的试件的劈裂抗拉强度在试验后有所下降,降幅为13.88%;硅灰掺量为10%的试件的劈裂抗拉强度在试验后降幅为6.46%;当硅灰掺量为20%~30%时,试件的劈裂抗拉强度在试验前后变化不大。  相似文献   

4.
混凝土结构构件容易发生开裂,裂缝的存在会影响其整体性和耐久性。以科氏芽孢杆菌为裂缝修复剂,以表面为开放孔的膨胀珍珠岩作为修复剂的载体,研制出一种基于微生物矿化沉积的裂缝自修复混凝土。为了保证该混凝土既具备良好裂缝自修复能力,又具有足够的基本力学性能,考察了膨胀珍珠岩载体(以下简称CEP)掺量对裂缝自修复混凝土抗压强度的影响,并考察了硅灰掺量对混凝土抗压强度的提高程度。试验结果表明,CEP掺量对裂缝自修复混凝土抗压强度影响显著,当CEP掺量占混凝土体积比为0~75%时,混凝土抗压强度随着CEP掺量的增加而降低;当掺量为75%时,混凝土抗压强度相比0掺量时降低了53%。随着硅灰掺量的增大,混凝土抗压强度呈增长趋势;硅灰的最优掺量为7%,相比0掺量时混凝土抗压强度增加了9.3%。  相似文献   

5.
对12组超高韧性水泥基复合材料(UHTCC)进行流动性、抗压强度、劈裂抗拉强度和抗弯强度试验,探讨胶凝材料与纤维种类对UHTCC性能的影响。结果表明,单掺2.0%镀铜钢纤维时,抗压强度和劈裂抗拉强度最佳;镀铜钢纤维掺量的增加,拉压比、抗弯试验峰值荷载以及韧度因子明显增大,抗弯性能与韧性能力得到提升;随着硅灰掺量、镀铜钢纤维掺量增大以及聚丙烯纤维的掺入,拌合物的流动性变差;当水泥掺量为胶凝材料质量的70%,粉煤灰与硅灰掺量皆为15%时,拌合物流动性良好,有利于纤维发挥增韧作用;当镀铜纤维与聚丙烯纤维组合时,较单掺镀铜钢纤维,抗压强度与劈裂抗拉强度显著提升,特别是抗弯强度试验峰值荷载明显增大。  相似文献   

6.
进行了钢纤维与聚丙烯纤维掺量及其混杂对高性能混凝土抗压强度和劈拉强度的试验研究,探讨了不同混杂纤维组合对高性能混凝土基体力学性能的影响规律。结果表明,钢-聚丙烯纤维混凝土的抗压强度、劈裂抗拉强度及其纤维增强系数与钢纤维和聚丙烯纤维掺量及混杂比密切相关。钢纤维掺量较低时,抗压强度随聚丙烯纤维掺量增加先减小后增加;钢纤维掺量较大时,抗压强度随聚丙烯纤维掺量的增加一直增大;当钢纤维掺量一定时,劈裂抗拉强度随聚丙烯纤维掺量的增加先增大后减小。当钢纤维和聚丙烯纤维掺量分别为3%、0.3%时,混杂效应系数最大。  相似文献   

7.
聚丙烯纤维对硅灰混凝土氯离子渗透性能的影响   总被引:1,自引:0,他引:1  
马保国  金宇  王凯  王信刚 《混凝土》2007,1(8):44-46
在正交试验的基础上,采用NEL试验方法研究了不同掺量(体积掺量0.067%~0.5%)、不同尺度(3、6、10 mm)的聚丙烯纤维混杂对硅灰混凝土抗氯离子渗透性能的影响.研究表明,聚丙烯纤维影响硅灰混凝土抗氯离子渗透性能的因素依次为:长短纤维掺量比>纤维掺量>复合纤维长度.当纤维掺量在低掺量范围内增加时,硅灰混凝土氯离子渗透性能会降低,而当纤维掺量较高时,硅灰混凝土氯离子渗透性能反而增加;纤维对硅灰混凝土氯离子渗透性能的影响与复合纤维的长度关系不大,而与长短纤维掺量比关系密切.  相似文献   

8.
纤维增强泡沫混凝土性能试验研究   总被引:9,自引:0,他引:9  
陈兵  刘睫 《建筑材料学报》2010,13(3):286-290,340
以普通硅酸盐水泥为结合剂,用粉煤灰和微硅粉取代砂和部分水泥制备泡沫混凝土.探讨了微硅粉和聚丙烯纤维对表观密度为800~1 500 kg/m3的泡沫混凝土抗压强度、劈裂抗拉强度、收缩率的影响.结果表明:采用掺加微硅粉和聚丙烯纤维技术,可以制备出表观密度在800~1 500kg/m3,抗压强度达到10~50 MPa的高强泡沫混凝土;微硅粉和聚丙烯纤维能显著提高泡沫混凝土的抗压强度,且泡沫掺量越大,其增强效果越显著;掺入聚丙烯纤维后,泡沫混凝土的劈裂抗拉强度显著提高,干缩率明显下降.  相似文献   

9.
研究了不同纤维掺加方式与掺量对深部隧道用C50高性能混凝土力学性能、抗氯离子侵蚀性能和表面透气性能的影响,并对其影响机理进行了分析。结果表明,纤维的掺入能显著提高混凝土的力学性能;当聚丙烯纤维体积掺量为0.6%时,混凝土的力学性能最好,28 d抗压强度和劈裂抗拉强度相比于对照组分别提高了9.3%和13.2%,而混杂纤维混凝土的抗压强度和劈裂抗拉强度都有一定的降低;混杂纤维对提高混凝土抗氯离子性能和降低表面透气性能的作用明显优于单种纤维,混杂纤维混凝土56 d电通量比单掺0.3%的聚丙烯纤维混凝土和单掺0.6%的木质素纤维混凝土分别降低了19.1%和15.5%,56 d表面透气系数则分别降低了42.3%和16.7%;纤维不仅能够填充混凝土内部的孔隙裂缝,还能消除混凝土内部"积水",促进未水化水泥颗粒水化,使混凝土更加密实,从而提高混凝土的抗渗性和耐久性。  相似文献   

10.
掺聚丙烯纤维改善C120超高强混凝土脆性的试验研究   总被引:1,自引:0,他引:1  
以C120超高强混凝土为基准,掺入聚丙烯纤维进行了混凝土的早期收缩、断裂性能、劈裂抗拉、高温脆性爆裂试验。试验结果表明:聚丙烯纤维限制了混凝土裂缝的发展;随着纤维掺量的增加,混凝土的韧性也随之增加;掺聚丙烯纤维后C120混凝土的劈裂抗拉强度和拉压比均有所提高,混凝土的脆性得到明显改善;克服了高温脆爆现象,实现了C120超高强混凝土的高性能化。  相似文献   

11.
Impact resistance and strength performance of concrete mixtures with 0.36 and 0.46 water–cement ratios made with polypropylene and silica fume are examined. Polypropylene fiber with 12-mm length and four volume fractions of 0%, 0.2%, 0.3% and 0.5% are used. In pre-determined mixtures, silica fume is used as cement replacement material at 8% weight of cement. The results show that incorporating polypropylene fibers improves mechanical properties. The addition of silica fume facilitates the dispersion of fibers and improves the strength properties, particularly the impact resistance of concretes. It is shown that using 0.5% polypropylene fiber in the silica fume mixture increases compressive split tensile, and flexural strength, and especially the performance of concrete under impact loading.  相似文献   

12.
研究了聚合物胶乳和聚丙烯纤维(PP纤维)对膨胀珍珠岩轻集料混凝土力学性能的影响及微观结构.结果表明:在一定的范围内,聚合物胶乳和聚丙烯纤维可以显著提高膨胀珍珠岩轻集料混凝土的抗压强度和抗折强度,使膨胀珍珠岩轻集料混凝土的吸水率明显降低,抗冲击性能明显提高.通过SEM扫描电镜观察发现,掺入聚合物胶乳后,聚合物聚集在毛细孔中,形成聚合物网络,改善了硬化水泥浆体结构,使界面结合更加致密.  相似文献   

13.
硅灰对水泥基PP纤维复合材料路用性能的影响   总被引:9,自引:1,他引:8  
研究了聚丙烯(PP)纤维高强混凝土的强度、抗冲击性能、脆度系数、耐磨性等路用性能。综合论述了掺硅灰对纤维混凝土路用性能的影响,试验证明,水泥基纤维混凝土中掺硅灰能显著提高纤维混凝土改善混凝土路用性能的作用。  相似文献   

14.
研究了不同掺量的玻璃纤维对高性能混凝土早期抗裂性能的影响,并以裂缝总条数、裂缝最大宽度以及总开裂面积评价其影响效果。同时,对比研究了纤维对高性能混凝土的抗压强度、劈裂抗拉强度和拉压比的影响。结果表明:随着玻璃纤维掺量的增加,混凝土的裂缝总条数不断减少,总开裂面积明显降低,当纤维体积掺量达到0.11%时,能够显著抑制混凝土早期裂缝的产生。玻璃纤维的掺入对抗压强度影响不大,但提高了混凝土的劈裂抗拉强度、拉压比和韧性,改善了高性能混凝土的抗裂性能。  相似文献   

15.
聚丙烯纤维对粉煤灰混凝土的抗裂性试验研究   总被引:1,自引:0,他引:1  
试验研究了聚丙烯纤维对大掺量粉煤灰混凝土的抗裂性及其他性能的影响。结果表明,在粉煤灰混凝土中掺入聚丙烯纤维可使混凝土的坍落度减小、稠度增大,抗压强度有所下降,但早期劈裂抗拉及抗折强度有明显的提高,尤其掺量1.5kg/m3最为显著。结构试验进一步表明,掺聚丙烯纤维能够有效地提高混凝土结构的抗裂性,改善韧性,延缓裂缝的发展。当纤维掺量为1.5kg/m3时,可有效地提高混凝土结构的抗破坏能力。  相似文献   

16.
This paper presents the results of an extensive experimental study on the compressive and splitting tensile strength of high-strength concrete with and without polypropylene (PP) fibers after heating to 600 °C. Mixtures were prepared with water to cementitious materials ratios of 0.40, 0.35, and 0.30 containing silica fume at 0%, 6%, and 10% cement replacement and polypropylene fibers content of 0, 1, 2, and 3 kg/m3. A severe strength loss was observed for all of the concretes after exposure to 600 °C, particularly the concretes containing silica fume despite their good mechanical properties at room temperature. The range of 300–600 °C was more critical for concrete having higher strength. The relative compressive strengths of concretes containing PP fibers were higher than those of concretes without PP fibers. The splitting tensile strength of concrete was more sensitive to high temperatures than the compressive strength. Furthermore, the presence of PP fibers was more effective for compressive strength than splitting tensile strength above 200 °C. Based on the test results, it can be concluded that the addition of 2 kg/m3 PP fibers can significantly promote the residual mechanical properties of HSC during heating.  相似文献   

17.
The main disadvantage of high-strength concrete is its highly brittle behavior and this can beovercome by adding fibers to the concrete. This would also improve some other mechanical properties of high-strength concrete such as tensile strength and compressive strength. These properties are not very well established for high-strength steel-fiber reinforced concrete (HSFRC) yet. In this study the influence of silica fume on the properties of HSFRC were investigated by using silica fume of two different percentages and three different hooked-end fibers namely, 30/0.50, 60/0.80 and 50/0.60 length/diameter (mm/mm). Fibers were added to concrete in three different volume percentages of 0.5, 1.0 and 2.0 by volume of concrete. The results indicated that there is a linear function between splitting tensile strength (Fsplt) and volume percentage of fibers (Vf) [i.e. Fplt = A(Vf) + B, where A and B are correlation coefficients] as well as between splitting tensile strength (Fsplt) and compressive strength (Fc) of plain series A concrete [i.e. Fsplt = C (√Fc) + D, where C and D are correlation coefficients]. These relations can describe the development of splitting tensile strength of HSFRC containing no silica fume, 5% silica fume and 10% silica fume by weight of cement. On the other hand, although silica fume has an effect on compressive strength, volume percentage and aspect ratio of steel fibers has little effect.  相似文献   

18.
通过受弯试验测得添加玄武岩纤维、聚丙烯纤维、混杂纤维和硅灰的不同混凝土梁开裂弯矩,利用开裂弯矩试验值及材性试验值推算出各混凝土梁的塑性变形发展程度系数k值,并绘出受拉区混凝土开裂时的应力分布;然后根据k值计算得到各混凝土梁的截面抵抗矩塑性影响系数,并推导出玄武岩纤维及聚丙烯纤维混凝土梁的开裂弯矩计算公式.结果表明:各混凝土梁均满足平截面假定,添加纤维可以提高普通混凝土梁及掺硅灰混凝土梁的开裂弯矩;相同体积分数下,玄武岩纤维对混凝土梁开裂弯矩的提升效果优于聚丙烯纤维;推算得到的k值为纤维混凝梁开裂弯矩的理论推导提供了参考,同时可作为评价纤维混凝土梁开裂时受拉区混凝土塑性变形能力的指标;混凝土梁的开裂弯矩受劈拉强度和塑性变形能力的共同影响;所提出的玄武岩纤维及聚丙烯纤维混凝土梁开裂弯矩计算公式可以作为二者开裂弯矩计算时的参考.  相似文献   

19.
硅灰对高强混凝土强度影响的试验研究   总被引:1,自引:1,他引:0  
在高强混凝土中掺入适量的硅灰,对提高混凝土的劈裂抗拉强度有非常明显的效果,也可在一定程度上增强混凝土的抗压强度和抗折强度.掺量低于或高于适量范围,对提高混凝土的强度作用很小.在实际工程混凝土中合理掺用硅灰,不仅可以提高混凝土的强度,而且变废为宝,改善环境,技术、经济和社会效益显著.  相似文献   

20.
In this study, the effect of silica fume on compressive and splitting tensile strength of lightweight concrete after high temperature was investigated experimentally and statistically. The mixes incorporating 0%, 10%, 20% and 30% silica fumes were prepared. After being heated to temperatures of 200, 400 and 800 °C, respectively, the compressive and splitting tensile strength of lightweight concrete was tested. This article adopts Taguchi approach with an L16 (45) to reduce the numbers of experiment. Two control factors (percentage of silica fume and heating degree) for this study were used. The level of importance of these parameters on compressive and splitting tensile strength was determined by using analysis of variance (ANOVA) method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号