首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 140 毫秒
1.
采用快淬工艺制备La0 6Ce0.4(NiCo0.16-xMn0.1Alx)5(x=0.04,0.06,0.08)储氢合金,并通过XRD、恒流充放电等测试方法对合金的相结构及电化学性能进行表征.试验结果表明:随着x增大,合金的放电容量下降,高倍率放电性能变差,但合金的循环稳定性得到明显改善;当x=0.08时,以715mA/g电流密度放电,合金循环寿命可以达到205次.交流阻抗测试结果表明,Al部分取代Co,使得电极的交换电流密度降低,以及氢原子在合金电极中的扩散速率减小.  相似文献   

2.
为提高La-Mg-Ni基储氢合金La0.73Ce0.18Mg0.09Ni3.20Al0.21Mn0.10Co0.60在Ni/MH二次电池中的电化学性能,将合成的酞菁铁作为添加剂添到合金中,考察不同含量的酞菁铁对La-Mg-Ni基储氢合金电化学性能的影响。通过分析紫外和红外图谱,可知合成出目标产物酞菁铁。添加酞菁铁后,合金的相结构没有变化。将不同含量的酞菁铁加入到储氢合金后,合金的最大放电容量变化不大,循环50次后的放电容量保持率从62.6%提高到75.3%。合金电极的交换电流密度I0、极限电流密度IL均有较大幅度增加,抗腐蚀性能也有提高。表明酞菁铁有效改善了储氢合金电极的综合电化学性能。  相似文献   

3.
采用快淬工艺制备La0.6Ce0.4(NiCo0.16-xMn0.1Alx)5(x=0.04,0.06,0.08)储氢合金,并通过XRD、恒流充放电等测试方法对合金的相结构及电化学性能进行表征.试验结果表明:随着x增大,合金的放电容量下降,高倍率放电性能变差,但合金的循环稳定性得到明显改善;当x=0.08时,以715mA/g电流密度放电,合金循环寿命可以达到205次.交流阻抗测试结果表明,Al部分取代Co,使得电极的交换电流密度降低,以及氢原子在合金电极中的扩散速率减小.  相似文献   

4.
采用熔剂覆盖熔炼的方法制备了La2Mg16Ni合金,并研究了该合金的吸放氢性能及吸放氢过程中合金的相结构变化.用Ni取代La2Mg17合金中的部分Mg,可提高储氢合金的吸放氢动力学性能,在温度高于553K时,所制备的储氢合金具有良好的吸放氢平台性能,其储氢容量可达到4.16%.  相似文献   

5.
用快淬法制得晶粒尺寸为20~50nm的富铈稀土储氢合金,其0.4C放电比容量达到310mAh/g.经表面改性处理后,合金的活化性能、循环性能、大电流放电性能和1.2V放电电压平台等电化学性能都得到提高.经4h表面改性处理后,在1C放电条件下,合金只需2次活化,就能达到最大比容量300.2mAh/g;经18次循环后,合金的放电比容量仍保持在297mAh/g,其放电效率达到93.80%.1C,2C和3C放电能力分别达到97.84%,93.27%和92.40%.  相似文献   

6.
为提高La-Mg-Ni基储氢合金La_(0.73)Ce_(0.18)Mg_(0.09)Ni_(3.20)Al_(0.21)Mn_(0.10)Co_(0.60)在Ni/MH二次电池中的电化学性能,将合成的酞菁铁作为添加剂添加到合金中,考察不同含量的酞菁铁对La-Mg-Ni基储氢合金电化学性能的影响。结果表明,添加酞菁铁后,合金的相结构没有变化。将不同含量的酞菁铁加入到储氢合金后,合金的最大放电容量变化不大,循环50次后的放电容量保持率从62.6%提高到75.3%,合金电极的交换电流密度I0、极限电流密度IL均有较大幅度增加,抗腐蚀性能也有提高,表明酞菁铁有效改善了储氢合金电极的综合电化学性能。  相似文献   

7.
采用快淬工艺制备了LaNixCu4.5-xMn0.3Al0.2无钴贮氢合金,同时对其充放电性能进行了研究.结果表明:快淬态合金为CaCu5型单一相结构;随着贮氢合金中铜含量的增加,贮氢合金的放电比容量和活化性能降低,合金的放电平台明显降低,但循环性能得到明显提高,当x=3.0时,合金的充放电综合性能较好;与铸锭工艺相比,快淬工艺所制备的合金的活化较慢,但放电比容量及循环性能得到提高.  相似文献   

8.
分析了铸态和固溶态Mg‐xSn(x=2.18~6.54)合金的组织,测试了其拉伸力学性能、硬度及冲击韧性.结果表明,随着Sn含量的增加,铸态组织中粗大树枝晶状α‐M g逐渐细化,M g2 Sn相逐渐增多,并且趋于连续网状分布于晶界处.室温下合金铸态拉伸力学性能及冲击韧性表现为先提高后降低,具有最佳性能的Mg‐3.52Sn合金的抗拉强度σb 、延伸率δ和冲击韧性值αnK分别为151 MPa ,12.5%和10 J/cm2;高温(423 K)时σb和δ先分别逐渐提高至Mg‐3.52Sn合金的87 MPa和19.0%,经略有降低后又分别逐渐提高至Mg‐6.54Sn合金的92 MPa和15.5%.经固溶处理后,Mg2Sn相完全固溶于α‐Mg基体中;室温下拉伸力学性能有所提高,而高温下拉伸力学性能基本保持不变;在Sn含量低和高时冲击韧性分别降低和提高.  相似文献   

9.
首先采用感应熔炼方法制备Mg3LaNi0.1合金,合金由Mg3La和LaMg2Ni两相组成,利用单辊旋淬的方法将熔融合金快速冷却,快冷后合金中的LaMg2Ni相消失,而由单一的Mg3La相组成.将快冷后合金置于氩气保护气氛中自然时效,随着时间增长,Ni逐渐析出而LaMg2Ni相重新形成.经过快淬和时效处理的Mg3LaNi0.1合金储氢特性较常规熔炼制备的合金有所改善,储氢量约3.1%,室温下3min内能吸氢2.7%,最低放氢温度为224℃.  相似文献   

10.
用快淬法制得晶粒尺寸为20~50 nm的富铈稀土储氢合金,其0.4C放电比容量达到310 mAh/g.经表面改性处理后,合金的活化性能、循环性能、大电流放电性能和1.2 V放电电压平台等电化学性能都得到提高.经4 h表面改性处理后,在1C放电条件下,合金只需2次活化,就能达到最大比容量300.2 mAh/g;经18次循环后,合金的放电比容量仍保持在297 mAh/g,其放电效率达到93.80%.1C,2C和3C放电能力分别达到97.84%,93.27%和92.40%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号