共查询到18条相似文献,搜索用时 46 毫秒
1.
统的神经网络校正算法存在收敛速度慢和校正精度低的缺点。当背景噪声较大时,它更难以获得令人满意的校正效果。针对其不足之处,提出一种基于中值滤波的红外焦平面阵列(IRFPA)非均匀性神经网络校正算法。该算法首先利用中值滤波对强噪声进行预处理,在此基础上采用改进的神经网络校正算法对IRFPA非均匀性进行自适应校正。实验结果表明,该算法与传统的神经网络方法相比具有收敛速度快和校正精度高等特点,并且使图像的峰值信噪比至少提高了10dB。 相似文献
2.
分析基于场景的红外焦平面阵列非均匀性校正方法中的景物退化和鬼影现象,提出了一种基于边缘约束高斯滤波的红外焦平面阵列非均匀性自适应校正方法。该方法设计了一个边缘约束高斯滤波器来获取理想的估计图像,利用最陡下降法得到计算增益校正因子和偏移量校正因子的迭代公式,并通过迭代步长的自适应控制来增快算法的收敛速度。通过仿真实验和真实红外图像处理对比实验表明:相较于目前已有的方法,该方法在有效抑制景物退化和鬼影现象的同时,较好地去除原始红外图像的固定图案噪声,保留了图像细节信息,提高了图像质量。 相似文献
3.
由于材料、工艺等原因,红外焦平面阵列(IRFPA)各单元普遍存在响应不一致的现象,从而导致IRFPA都存在非均匀性.非均匀性校正(NUC)是红外图像处理系统中的重要环节.本文在研究了传统的基于神经网络的NUC算法的基础上,提出了一种改进的基于神经网络的非均匀性自适应校正算法,并对比了传统的基于神经网络的算法和本文算法的校正效果和收敛速度,实验表明本文提出的算法校正效果好,收敛速度快. 相似文献
4.
在紫外成像系统中,紫外焦平面阵列的非均匀性是影响成像质量的重要因素.介绍了标准的神经网络算法对焦平面阵列非均匀性的校正,并针对标准的神经网络算法的收敛速度慢的缺点,提出了改进算法.通过matlab对算法进行仿真,结果表明BP神经网络(Back.Propagation Neural Network)算法对焦平面阵列的非均匀性有良好的校正效果,改进后的算法效率有了较大地提高.神经网络非均匀性校正算法可以广泛的运用于其他焦平面阵列的非均匀性的校正中. 相似文献
5.
针对读出电路与探测器产生的非均匀性,并对递归最小二乘非均匀校正算法(RLS算法)进行扩展和改进,提高非均匀校正的精度和算法的收敛速度。首先对红外焦平面阵列的非均匀性进行建模仿真,根据建立的模型利用局部恒定统计法对读出电路产生的非均匀性进行校正,然后采用自适应中值滤波算法(RAMF算法)对图像进行预处理,从而提供给后续RLS算法具有较低噪声的图像,实现RLS算法对探测器的非均匀性校正。仿真结果表明提出的算法能够有效地抑制读出电路对校正精度的影响,消除图像的非均匀性,同时采用RAMF算法对图像的预处理过程,能够加快RLS算法的收敛速度,提高信噪比,获得较好的非均匀性校正效果。 相似文献
6.
针对传统的基于神经网络的自适应非均匀性校正(Neural-Network-based Non-Uniformity Correction, NN-NUC)算法在实际应用中存在校正能力有限和容易产生鬼影的问题,深入分析了NN-NUC算法中的鬼影产生过程,并给出了抑制鬼影的一般性方法;然后结合实际红外成像系统的特点,提出了一种改进型NN-NUC算法。仿真实验结果表明,该算法可以最大限度地抑制场景鬼影的产生,并可有效减小系统输出图像的非均匀性噪声。此外,本文算法计算量小,且易于用硬件实现,因此具有很好的工程应用价值。 相似文献
7.
基于场景的非均匀校正依然是红外领域的一个研究热门.神经网络算法是一种较为典型的场景校正算法.本文主要针对神经网络算法本身不能校正光学引入的非均匀性问题,提出了新的改进算法,通过对神经网络输入层的预处理,消除图像的低频噪声,此外,为了消除预处理对图像对比度的影响,本文增加了神经网络的层数,使用双层神经网络对算法进行更新,从而消除了图像对比度下降的现象.实验结果表明,改进的神经网络算法能够有效的改善图像质量,消除图像中光学引入的非均匀性. 相似文献
8.
9.
基于粒子滤波的红外焦平面阵列非均匀校正算法 总被引:1,自引:3,他引:1
空间固定图案噪声严重影响红外探测系统的成像质量,并且还会随着外界环境的变化而缓慢漂移.卡尔曼滤波算法可以解决这个问题,但会受到线性高斯模型的限制.提出了一种利用粒子滤波跟踪噪声漂移,进而实现非均匀校正的算法.首先使用粒子采样噪声参数可能的取值状态,然后通过状态空间模型对这些粒子进行预测和更新,最后把粒子状态的加权平均值作为对噪声参数的估计.该算法是对卡尔曼滤波算法的扩展,不受任何模型条件的限制,因此,能够实现对不同情况噪声漂移的有效跟踪.实验结果表明:经此算法校正后的图像的峰值信噪比平均都在37 dB以上,而经卡尔曼滤波算法校正后的图像却只有28 dB. 相似文献
10.
红外焦平面阵列固有的非均匀性导致叠加在图像上的固定图形噪声严重影响了红外系统的成像质量。传统的神经网络非均匀校正算法存在待处理像素的期望值求解固有缺陷、收敛速度慢和学习速度过大,容易造成算法不收敛。提出了基于图像梯度的神经网络非均匀校正算法,通过对处理像素的期望值求解、改进和调整学习速度、改善图像校正效果,提高了算法收敛速度。通过对真实的红外图像序列实验表明,新算法相对传统的神经网络算法收敛速度提高了50%以上,红外图像校正效果也得到了提高。 相似文献
11.
收敛速度和鬼影是基于场景非均匀性校正技术的一对共性矛盾,两者无法同时达到最优。而本文提出了一种在基于场景非均匀性校正和定标非均匀性校正之间建立桥梁的思路,利用定标法提供的大量先验信息解决收敛速度和鬼影的矛盾问题。贝叶斯框架则是建立该桥梁的最佳工具,本文利用贝叶斯方法计算非均匀性参数的正确概率,用参数正确概率来决定是否使用该组参数进行校正,从而在源头上抑制鬼影。非均匀性参数正确概率由先验概率和观测概率两部分组成。对于先验概率,本文定义了非均匀性的局部同分布约束,并通过定标统计的策略利用该约束构建了先验概率;对于观测概率,本文发现并详细分析了红外焦平面阵列固有的非均匀增益参数空间相关性,利用空间相关性构建了观测概率。最终,通过本文算法对真实和仿真的红外图像序列进行处理,表明该算法在保证高收敛速度前提下,其参数正确概率有效抑制了鬼影,取得了好的处理效果。 相似文献
12.
非制冷红外焦平面阵列的固定图案噪声具有与条带噪声相类似的特性.通过对矩匹配算法和时域高通滤波算法的研究, 提出了一种多尺度时域矩匹配非均匀性校正算法.首先利用高斯金字塔对相邻帧待校正图像进行全局运动估计, 然后对各尺度的高斯金字塔和拉普拉斯金字塔分别进行时域矩匹配.对真实红外图像序列的实验结果表明, 该算法在提高收敛速度的同时可有效减少鬼影现象的出现. 相似文献
13.
红外焦平面阵列(IRFPA)像元响应存在不一致性,会严重影响红外成像系统成像的质量,实际应用中需要采用响应的非均匀性校正(NUC)技术。传统的神经网络校正算法在校正结果中存在图像模糊和伪像的问题,影响人们对于目标的观察。在分析了传统的神经网络性校正算法所出现问题原因的基础上,提出了有效的改进算法:用非线性滤波器代替传统算法中使用的均值滤波器。算法改进之后所得到的校正图像,不仅在清晰度方面有明显的改善,而且有效的消除了传统算法中存在伪像的问题。 相似文献
14.
针对基于场景的自适应校正算法普遍存在鬼影的问题, 分析了神经网络算法(NN-NUC)产生鬼影的原因,并在此基础上提出了用基于偏微分方程(PDE)的非线性滤波方法取代NN-NUC算法中邻域平均的方法来获取期望图像,从而减少边缘像素误差,达到消除鬼影的目的.采用实际采集的红外图像进行实验,结果表明,很好地消除了鬼影.与已有的几种去鬼影的方法相比,具有更快的收敛性. 相似文献
15.
在红外成像制导应用中,为满足长周期免拆卸贮存的应用需求,红外导引头非均匀性的研究越来越多的集中于采用自适应的校正方法来代替传统的参考源的非均匀性校正方法。针对传统基于神经网络的自适应非均匀性校正算法容易造成“鬼影”的问题,提出了一种改进的红外导引头成像自适应非均匀性校正算法。该方法在传统神经网络非均匀性校正的基础上,进行了4点实用化的改进:首先,通过对图像运动判断,避免场景静止时的过学习;其次,采用自适应学习率,避免细节丰富区域的过学习;然后,利用双边滤波求期望目标的评估,减少细节的损失;最后,通过判断误差函数的波动量来决定是否对偏置进行更新。实验结果表明,该方法在校正精度、收敛速度和稳定性方面均优于传统的神经网络校正算法。 相似文献
16.
深入分析了红外焦平面阵列(1RFPA)非均匀性的神经网络校正法出现目标退化和伪像的成因,指出没有考虑目标边缘而盲目更新系数是产生问题的根源.在此基础上提出了防止目标退化和伪像的边缘指导的神经网络自适应校正方法(ED-NN-NUC).仿真实验以及针对实际红外图像的实验结果表明,所指出的问题根源是正确的,提出的方法是合理有效的. 相似文献
17.
自适应非均匀性校正中鬼影问题的分析 总被引:3,自引:0,他引:3
论述了红外焦平面阵列自适应非均匀校正中的“鬼影”问题;以实际图像序列对目前现有的方法进行了实验测试,表明其实际作用有限,而且影响非均匀性的校正效果;提出了三种新的改进和设想,并分析了存在的不足。鬼影问题的有效解决必须基于来自新概念的创新性算法技巧。 相似文献
18.
收敛问题是基于场景非均匀性校正算法的一个共性问题,提出了一个能够自适应收敛的非均匀性校正算法,该算法的一个特点是只对非均匀性空间频率的高频部分进行处理,详细论述了该处理的优点,同时还提出了一个控制收敛速度的因子,使得算法的收敛速度根据场景的动态范围自动调整,这将很大程度的改善基于场景非均匀性校正算法收敛特性,最后通过实验数据论证了该算法的性能. 相似文献