首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Penobscot River drains the largest watershed in Maine and once provided spawning and rearing habitats to 11 species of diadromous fishes. The construction of dams blocked migrations of these fishes and likely changed the structure and function of fish assemblages throughout the river. The proposed removal of two main‐stem dams, improved upstream fish passage at a third dam, and construction of a fish bypass on a dam obstructing a major tributary is anticipated to increase passage of and improve habitat connectivity for both diadromous and resident fishes. We captured 61 837 fish of 35 species in the Penobscot River and major tributaries, through 114 km of boat electrofishing. Patterns of fish assemblage structure did not change considerably during our sampling; relatively few species contributed to seasonal and annual variability within the main‐stem river, including smallmouth bass Micropterus dolomieu, white sucker Catostomus commersonii, pumpkinseed Lepomis gibbosus, and golden shiner Notemigonus crysoleucas. However, distinct fish assemblages were present among river sections bounded by dams. Many diadromous species were restricted to tidal waters downriver of the Veazie Dam; Fundulus species were also abundant within the tidal river section. Smallmouth bass and pumpkinseed were most prevalent within the Veazie Dam impoundment and the free‐flowing river section immediately upriver, suggesting the importance of both types of habitat that supports multiple life stages of these species. Further upriver, brown bullhead Ameiurus nebulosus, yellow perch Perca flavescens, chain pickerel Esox niger, and cyprinid species were more prevalent than within any other river section. Our findings describe baseline spatial patterns of fish assemblages in the Penobscot River in relation to dams with which to compare assessments after dam removal occurs. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

2.
We evaluated the effects of streamflow‐related changes in channel shape and morphology on the quality, quantity, availability and spatial distribution of young‐of‐year and adult smallmouth bass Micropterus dolomieu habitat in an alluvial stream, the Baron Fork of the Illinois River, Oklahoma. We developed Habitat Suitability Criteria (HSC) for young‐of‐year and adult smallmouth bass to assess changes in available smallmouth bass habitat between years, and compare predicted smallmouth bass Weighted Usable Area (WUA) with observed WUA measured the following year. Following flood events between 1999 and 2000, including a record flood, changes in transect cross‐sectional area ranged from 62.5% to 93.5% and channel mesohabitat overlap ranged from 29.5% to 67.0% in study three study reaches. Using Physical HABitat SIMulation (PHABSIM) system analysis, we found that both young‐of‐year and adult smallmouth bass habitat were differentially affected by intra‐ and inter‐annual streamflow fluctuations. Maximum WUA for young‐of‐year and adults occurred at streamflows of 1.8 and 2.3 m3 s?1, respectively, and WUA declined sharply for both groups at lower streamflows. For most microhabitat variables, habitat availability was similar between years. Habitat suitability criteria developed in 1999 corresponded well with observed fish locations in 2000 for adult smallmouth bass but not for young‐of‐year fish. Our findings suggest that annual variation in habitat availability affects the predictive ability of habitat models for young‐of‐year smallmouth bass more than for adult smallmouth bass. Furthermore, our results showed that despite the dynamic nature of the gravel‐dominated, alluvial Baron Fork, HSC for smallmouth bass were consistent and transferable between years. Published in 2008 by John Wiley & Sons, Ltd.  相似文献   

3.
Geology and hydrology are drivers of water chemistry and thus important considerations for fish otolith chemistry research. However, other factors such as species and habitat identity may have predictive ability, enabling selection of appropriate elemental signatures prior to costly, perhaps unnecessary water/age‐0 fish sampling. The goal of this study was to develop a predictive methodology for using species and habitat identity to design efficient otolith chemistry studies. Duplicate water samples and age‐0 fish were collected from 61 sites in 4 Missouri River reservoirs for walleye Sander vitreus and one impoundment (Lake Sharpe, South Dakota) for other fishes (bluegill Lepomis macrochirus, black crappie Pomoxis nigromaculatus, gizzard shad Dorosoma cepedianum, largemouth bass Micropterus salmoides, smallmouth bass M. dolomieu, white bass Morone chrysops, white crappie P. annularis, and yellow perch Perca flavescens). Water chemistry (barium:calcium [Ba:Ca], strontium:calcium [Sr:Ca]) was temporally stable, spatially variable, and highly correlated with otolith chemistry for all species except yellow perch. Classification accuracies based on bivariate Ba:Ca and Sr:Ca signatures were high (84% across species) yet varied between floodplain and main‐channel habitats in a species‐specific manner. Thus, to maximize the reliability of otolith chemistry, researchers can use species classifications presented herein to inform habitat selection (e.g., study reservoir‐oriented species such as white bass in main‐channel environments) and habitat‐based classifications to inform species selection (e.g., focus floodplain studies on littoral species such as largemouth bass). Overall, species and habitat identity are important considerations for efficient, effective otolith chemistry studies that inform and advance fisheries and aquatic resource management.  相似文献   

4.
The diet of double-crested cormorants (Phalacrocorax auritus) on Little Galloo Island (LGI) in the eastern basin of Lake Ontario has been quantified since 1992. Over the past nine years considerable information has been generated on cormorant feeding ecology through the examination of approximately 12,000 pellets collected on LGI, where three distinct cormorant feeding periods, pre-chick, chick, and post-chick, are delineated by differences in diet composition and daily fish consumption. Yellow perch (Perca flavescens) were the major prey during pre-chick and post-chick feeding periods. Alewife (Alosa pseudoharengus), which move inshore to spawn in mid-June, dominated (>60%) cormorant diets during the chick feeding period. Mean daily fish consumption (14.6) during the pre-chick feeding period was significantly greater than during the chick feeding (9.3) or post-chick feeding (8.0) periods. The proportion of smallmouth bass (Micropterus dolomieu) in the diet increased over the season (0.8% to 7.2%), while the size of bass consumed declined (214 mm to 143 mm). Forage fish (mainly alewife, three-spine sticklebacks [Gasterosteus aculeatus] and minnows) comprised 58% of the diet of LGI cormorants, followed by panfish (37%) (yellow perch, pumpkinseed [Lepomis gibbosus], rock bass [Ambloplites rupestris]) and gamefish (5%) (mostly smallmouth bass). On the average LGI cormorants consumed about 32.8 million fish annually, weighing about 1.4 million kilograms. Cormorants from LGI consumed more biomass of smallmouth bass and yellow perch annually than is taken by sport (bass and yellow perch) and commercial (perch) fishermen.  相似文献   

5.
We evaluated whether or not the invasive round goby (Neogobius melanostomus) represents an important prey source for seven native fish predators in Lake St. Pierre (St. Lawrence River, Canada). The frequency of occurrence of round goby in the stomach contents of brown bullhead (Ameiurus nebulosus) and channel catfish (Ictalurus punctatus) was very low (< 5%), while for the five other predators, it varied between 22% (yellow perch; Perca flavescens) and 65% (sauger; Sander canadensis). Several competing models linking the probability of occurrence of round goby in stomach contents to variables related to space, physical habitat, biotic interactions and predator size were tested for the five species feeding on round goby. Results indicated that space variables influenced round goby occurrence in stomachs for all species. In addition, physical habitat variables had an influence for sauger and walleye (Sander vitreus); biotic variables had an influence for yellow perch, walleye and sauger; and size had an influence for northern pike (Esox lucius), smallmouth bass (Micropterus dolomieu) and walleye. These results are discussed in light of known biological features of the round goby and native predators studied here and have important implications in terms of understanding round goby invasion success in the Great Lakes–St. Lawrence system.  相似文献   

6.
Widespread invasion of Round Goby (Neogobius melanostomus) throughout the Great Lakes has raised concerns regarding increased egg predation on fish species. To better understand nest predation, we examined nesting habitat selected by three upper St. Lawrence River Centrarchid species and the predator assemblage at nests during the 2011 and 2012 egg incubation and larval periods. Following removal of guarding males by angling, 5-min observations were used to identify and enumerate predators at rock bass (Ambloplites rupestris; n = 81), pumpkinseed (Lepomis gibbosus; n = 80), and smallmouth bass (Micropterus dolomieu; n = 40) nests. Differences in nesting habitat among centrarchids corresponded with differences in nest predator assemblages along a gradient defined primarily by depth and substrate. Pumpkinseed nests in shallow depths with soft substrate were visited principally by minnow spp., but few round goby. Smallmouth bass nests at greater depth with hard substrates were frequented nearly exclusively by round goby, while rock bass nests at intermediate depth with a mix of hard and soft substrates were visited by round goby and yellow perch (Perca flavescens). Rock bass nests had a higher predator burden than pumpkinseed nests in 2011, but no differences were observed among centrarchid species in 2012. Round goby were a major component of the predators at rock bass and smallmouth bass nests. However, predation burden imposed by yellow perch was higher than round goby at rock bass nests. We conclude nesting habitat selection influences native and non-native egg predator assemblages, but whether round goby predation is additive or compensatory remains unclear.  相似文献   

7.
8.
Dams create barriers to fish migration and dispersal in drainage basins, and the removal of dams is often viewed as a means of increasing habitat availability and restoring migratory routes of several fish species. However, these barriers can also isolate and protect native taxa from aggressive downstream invaders. We examined fish community composition two years prior to and two years after the removal of a pair of low‐head dams from Boulder Creek, Wisconsin, U.S.A. in 2003 to determine if removal of these potential barriers affected the resident population of native brook trout (Salvelinus fontinalis). Despite the presence of other taxa in the downstream reaches, and in other similar streams adjacent to the Boulder Creek (including the brown trout, Salmo trutta), no new species had colonized the Boulder Creek in the two years following dam removal. The adults catch per unit effort (CPUE) was lower and the young‐of‐the‐year catch per unit effort (YOY CPUE) was higher in 2005 than in 2001 in all reaches, but the magnitude of these changes was substantially larger in the two dam‐affected sample reaches relative to an upstream reference reach, indicating a localized effect of the removal. Total length of the adults and the YOY and the adult body condition did not vary between years or among reaches. Thus, despite changes in numbers of adults and the YOYs in some sections of the stream, the lack of new fish species invading Boulder Creek and the limited extent of population change in brook trout indicate that dam removal had a minor effect on these native salmonids in the first two years of the post‐removal. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

9.
Trimming of Lake Ontario smallmouth bass (Micropterus dolomieui Lacepede) and brown trout (Salmo trutta Linnaeus) was found to reduce levels of mirex, Aroclor 1254, and DDE by 43% to 64%. Trimming included the removal of the skin, dorsal and ventral fat, and the entire lateral line. Of the cooking methods tested (smoking, broiling, baking, and deep frying), only deep frying produced consistently high reductions of all three contaminants.  相似文献   

10.
Though aquatic ecosystems (and the Laurentian Great Lakes in particular) have faced many stressors over the past century, including fisheries collapses and species invasions, rarely are data available to evaluate the long-term impacts of these stressors on food web structure. Stable isotopes of fish scales from the 1940s to the 2010s in South Bay, Lake Huron were used to quantify trophic position and resource utilization for fishes from offshore (alewife, cisco, lake trout, lake whitefish, rainbow smelt) and nearshore (rock bass, smallmouth bass, white sucker, yellow perch) habitats, providing one of the longest continuous characterizations of food webs in the Laurentian Great Lakes. Mean δ15N and δ13C values for each species were compared across twenty-year time periods. Using directional statistics, no significant community-wide changes were detected between time periods from 1947 to 1999. In contrast, a significant change was detected between 1980-1999 and 2000–2017, with all species showing increased reliance on nearshore resources. The increase in nearshore resource reliance for lake whitefish between these time periods was the greatest in magnitude compared with any other species between any two adjacent time periods. Besides lake whitefish, the increased reliance on nearshore resources was more pronounced for nearshore compared to offshore species. The timing of these shifts coincided with the invasion of dreissenid mussels and round goby, and declines in offshore productivity and prey densities. These results show the unprecedented magnitude of recent food-web change in Lake Huron after 50 years of relative stability.  相似文献   

11.
The trophic roles of key Ponto-Caspian invaders (quagga mussels Dreissena bugensis, amphipods Echinogammarus ischnus and round goby Apollonia melanostomus) within the littoral food web of eastern Lake Erie were quantified using stable isotopes (δ13C, δ15N). A dual stable isotope parameter search with a mass balance component was used to assess the isotopic importance of quagga mussels and amphipods as dietary items to two size classes of round goby. The utility of the mass balance simulation was also evaluated as a tool to approximate isotopic contributions of feasible prey and identify gaps incurred by “missing” prey items not included in the sampling. The mass balance dietary simulation, confirmed by stomach content data, indicated that isotopically important prey to small round goby (< 11.2 cm) were chironomids and Ponto-Caspian amphipods, while large round goby (≥ 11.2 cm) showed strong preference for quagga mussels. The dietary mass balance simulation output also supported the isotopic importance of round goby to the somatic growth of smallmouth bass, rock bass and freshwater drum. The isotopic mass balance output for yellow perch was more ambiguous, which may be in line with their known broadly omnivorous diet. The white bass output was in line with published data indicating increasing consumption of round goby for this species, while the brown trout output strongly favoured alewife isotopic contributions. However for white perch and walleye, the mass balance simulations were not in line with their known published diets in Lake Erie, probably due to a lack of key prey items in the sample set (e.g. zooplankton for white perch and shiner species for walleye). As expected, the Ponto-Caspian species have integrated themselves into the littoral food webs, and the “quagga mussel–round goby–smallmouth bass” food chain forms one of the key components within the trophodynamics of Lake Erie.  相似文献   

12.
This study examined how spring‐flow (SF) contributions to streams related to the distribution and abundance of smallmouth bass Micropterus dolomieu in a predominately pasture landscape in Missouri, USA. Stream segments (N = 13) with similar landscape characters were classified by SF volume into high SF (HSF) or low SF (LSF) groups. The densities of smallmouth bass, channel unit (CU) use and temperature‐selection patterns were assessed for several life stages and frequency distributions for age 0 fish. More smallmouth bass were present in stream segments with HSF influence. Age 0 fish were twice as likely to be present in HSF stream segments. Older age classes were present in stream reaches independent of SF contribution. For all age classes, the use of particular CUs did not depend on SF influence. All age classes were more likely to be present in pools than other CUs. Microhabitat temperature selection differed among age classes. Age 0 fish selected warmer temperatures with a gradual shift towards cooler temperatures for older age classes. The length frequency of age 0 fish was skewed towards larger individuals in streams with limited SF influence, whereas the length frequency in HSF stream segments was skewed towards smaller individuals. The benefits of significant groundwater via SF influence seem to be related to increased hatch or survival of age 0 fish and the availability of optimal temperatures for adult smallmouth bass growth. Thermal refugia and stable flows provided by springs should be recognised for their biological potential to provide suitable habitat as climate change and other land‐use alterations increase temperature regimes and alter flow patterns. Published in 2011 by John Wiley & Sons, Ltd.  相似文献   

13.
Cayuga Lake fishes were collected monthly with experimental gill nets at depths of 2 to 31.5 m. Horizontally-placed nets were arranged to allow determinations of vertical and inshore-offshore variation in fish distribution and occupied temperatures. Warmwater species concentrated in inshore and surface waters at 19-23° C during the summer. Coldwater species concentrated in hypolimnetic waters at 9-15° C during the summer. Seasonal inshore-offshore movements were evident with all species except those which were captured only close to shore (northern pike, carp, smallmouth bass, white sucker). Depth ranges in which greatest numbers of common species occurred in the summer (July-September) were: alewife, inshore and surface to 15.3 m; lake trout, 15.3 to 30.5 m or more; northern pike, inshore and surface to 15.3 m; rainbow smelt, 7.6 to 30.5 m or more; spottail shiner, inshore and 7.6 m; trout-perch, inshore and 7.6 to 15.3 m; yellow perch, inshore and 7.6 to 15.3 m. Mean occupied temperatures (° C) of common species during the summer were: alewife 18.4 to 20.9; lake trout, 12.5 to 13.6; northern pike, 19.4; rainbow smelt, 10.4-14.4; spottail shiner, 19.6 to 21.5; trout-perch, 18.7-21.3; yellow perch, 19.4 to 21.0. Depth distribution was obviously influenced by temperature preferences and also by availability of food in certain species. Catch size was directly related to water temperatures in several species.  相似文献   

14.
We measured 926 smallmouth bass (Micropterus dolomieu), 6,935 yellow perch (Perca flavescens), 6,416 rock bass (Ambloplites rupestris), and 4,852 pumpkinseed (Lepomis gibbosus) otoliths recovered from double-crested cormorant (Phalacrocorax auritus) pellets to determine the sizes (total lengths) of these fish consumed by cormorants. Otoliths were recovered from cormorant pellets collected from 1993 to 2002 at six colonies along the eastern Lake Ontario–St. Lawrence River corridor. Otolith – length fish length regressions were used to estimate the length of fish species consumed by cormorants. Only 1.5% of these otoliths had no visible erosion, 33.3% had minor erosion, and 65.2% had moderate erosion. We found that the exclusive use of uneroded otoliths severely limited the sample size available for estimating fish size and likely would cause an overestimation of fish size. Species-specific differences were evident when using erosion criteria to determine fish size and could result in bias when estimating length, especially for species such as smallmouth bass whose otoliths possess a rostrum that is readily eroded. Using a random sample (n = 100) of all intact otoliths recovered in pellets provided a conservative estimate of fish length that was smaller than that derived from uneroded or minimally eroded otoliths. Annual variation in the size of fish consumed by cormorants was more pronounced than seasonal variation for most species. We describe and recommend a new technique that incorporates both chick regurgitant and pellet samples for estimating the size of fish consumed by cormorants.  相似文献   

15.
Groundwater‐dominated streams have particular flow regimes that commonly support populations of trout. Meso‐ and micro‐habitat surveys were carried out on a reach of the river Tern that drains a Triassic sandstone aquifer in the English West Midlands, to investigate brown trout (Salmo trutta) habitat use with varying flows. Mesohabitats were mapped over a range of summer and autumn flows and coupled with direct underwater observation (snorkelling) of fish locations together with point measurements of velocity and depth. The number of habitat types recorded was low and dominated by glides, runs, and backwaters. Brown trout showed a strong association with glides and runs with adults being more associated with runs and parr with glides. General habitat use curves showed brown trout to favour depths between 0.30 and 0.40 m and velocities below 0.40 m s?1. A clear preference was shown for sand and gravel bed materials. However, the differentiation of hydraulic habitats was weak and there was no trend in mesohabitats or change in trout use of mesohabitats with discharge. The study raises limitations of the mesohabitat survey approach when linking fish ecology, flow and physical habitat in small streams with low flow variability and low habitat diversity. In these situations, other factors (especially cover features) appear to strongly influence brown trout distribution. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

16.
River rehabilitation initiatives have become commonplace in European water courses as a result of European Union Water Framework Directive requirements. However, the short‐term responses of fishes to such work have thus far been varied, with some river rehabilitation efforts resulting in demonstrable improvements in diversity and size structure, whereas others have resulted in little or no change. Electrofishing and channel character surveys were conducted annually between 2009 and 2014 on a reach of the River Glaven (North Norfolk, UK) before and after rehabilitation work (embankment removal in 2009 and re‐meandering in 2010) as well as on a control reach immediately upstream. To assess the effects of rehabilitation work, before‐after‐control‐impact analysis tested for changes in channel character (geomorphology, substratum composition, and mesohabitat structure) and in fish species richness, relative abundance, population density, and size structure (calculated after fish data entry into the UK Environment Agency's National Fisheries Population Database). Following re‐meandering work (i.e., treatment), habitat heterogeneity and depth variation increased in the treatment reach, but fish responses were not significant except for biomass and density increases of brown trout Salmo trutta and abundance decreases of European eel Anguilla anguilla, in the treatment but not the control reach. These results are consistent with comparable river rehabilitation initiatives elsewhere, and they suggest that larger‐scale rehabilitations are probably needed to produce greater increases in fish density and diversity. It is recommended that future rehabilitation initiatives address catchment‐scale factors that can enhance ecosystem recovery, for example, removal of barriers to colonization, and increases in connectivity and water quality issues linked to eutrophication, elevated fine sediment inputs, and various pollutants.  相似文献   

17.
The health of resident fishes serves as a biologically relevant barometer of aquatic ecosystem integrity. Here, the health of the Ottawa River and Ashtabula River (both within the Lake Erie Basin) were assessed using morphological and immunological biomarkers in brown bullheads (Ameiurus nebulosus) and largemouth bass (Micropterus salmoides). Biomarker metrics were compared to fish collected from a reference site (Conneaut Creek). Data utilized for analyses were collected between 2003 and 2011. Fish collected from all three river systems had markedly different contaminant profiles. Total PCBs were the dominant contaminant class by mass. In bullhead, PCBs were highest in fish from the Ashtabula River and there were no differences in fish collected pre- or post-remediation of Ashtabula Harbor (median = 4.6 and 5.5 mg/kg respectively). Excluding PCBs, the Ottawa River was dominated by organochlorine pesticides. Liver tumor prevalence exceeded the 5% trigger level at both the Ashtabula (7.7%) and Ottawa Rivers (10.2%), but was not statistically different than that at the reference site. There was no statistically significant association between microscopic lesions, gross pathology and contaminant body burdens. Collectively, contaminant body burdens were generally negatively correlated with functional immune responses including bactericidal, cytotoxic-cell and respiratory burst activity in both species. Exceptions were positive correlations of HCB and heptachlor epoxide with respiratory burst activity in largemouth bass, and HCB with respiratory burst activity in bullhead and ΣBHC for all three functional assays in bullhead. Data here provide additional support that organochlorine contamination is associated with immunomodulation, and that species differences exist within sites.  相似文献   

18.
The temporal trends of polychlorinated biphenyls (PCBs) in Lake Erie fish were evaluated using 30 years of fish contaminant data (1977–2007). The first step of our statistical analysis was based on simple exponential decay models parameterized with Bayesian inference techniques to assess the declining rates in four intensively sampled fish species, i.e., walleye (Stizostedion vitreum), coho salmon (Oncorhynchus kisutch), rainbow trout (Oncorhynchus mykiss) and white bass (Morone chrysops). Because the exponential model postulates monotonic decrease of the PCB levels, we included first- or second-order random error terms in our statistical formulations to accommodate non-monotonic patterns in the dataset studied. Generally, our results suggest that the PCBs have been decreasing over the last 30 years with relatively weak rates that vary among the different fish species examined. Yet, our analysis with the exponential decay model also identified an increasing trend in the PCB concentrations of walleye skinless–boneless filet data, which is manifested after the mid-90s. In the second step, we used dynamic linear modeling (DLM) analysis to account for the fact that the fish length covaries with the PCB concentrations and that different sized fish may have been sampled over time. Our DLM analysis suggests that the previously reported trend of the walleye filet data is actually an artifact associated with the bias of the fish sampling practices followed. The coho salmon and rainbow trout PCB concentrations have been decreasing steadily during the study period but the associated rates were relatively weak. Finally, the PCB trends in white bass appear to have been stabilized over that last decade, although the robustness of this result remains to be confirmed due to the temporal inconsistencies of the information used. We conclude by emphasizing the importance of explicitly accounting for the different covariates (e.g., length, age, lipid content) that can potentially hamper the detection of the actual temporal trends of fish contaminants.  相似文献   

19.
Large woody debris was explored as a method of restructuring channelized streams to improve salmonid habitat. Whole trees were inserted in sections along a 2 km reach of a channelized stream to determine if large woody debris: (1) increased the abundance and biomass of brown (Salmo trutta) and rainbow trout (Oncorhynchus mykiss); (2) had an effect on physical habitat features; and (3) provided trouts with additional habitat. Trout populations and stream morphology were monitored before and after the introduction of woody debris and compared to control sections lacking woody debris. Abundance and biomass of both brown and rainbow trout increased in the treatment section compared to the control. Maximum and standard deviation of fish total length increased in all sections during summer months. The number of individuals and the standard deviations of total lengths decreased in the control section in winter, but increased in the treatment section. Mean water velocities decreased and number and volume of pools increased in treatment sections. Brown and rainbow trouts sought woody debris structures for cover. We conclude that large woody debris can serve as a method of reconstructing channelized streams to improve salmonid habitat. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号