首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Transmission electron microscopy observations have been carried out for a Cu-14 pct Al-4 pct Ni (wt pct) alloy aged in the thin foil state in an electron microscope. It was found that large cuboidal precipitates of theγ 2 phase and many small domains of a highly ordered phase form in the DO3 matrix during aging. The small ordered domains form preferentially on matrix antiphase boundaries as well as within the antiphase domains. The formation ofγ 2 and the highly ordered phase, both of which are rich in alloy content, depletes the matrix of solute and thus raises the transformation temperaturesM s andM f. The small domains of the highly ordered phase prevent the propagation and reversion of martensite plates, leading to higherM s-Mf andA fins-Af temperature intervals.  相似文献   

2.
Pseudoelasticity and the strain-memory effect have been studied in alloys with compositions in the range Cu-33 to 35 wt pct Zn-3 to 3.5 wt pct Sn, having a retainedβ structure and a martensitic transformation below room temperature. The alloys show maximum pseudoelasticities of 8.5 pct for single crystals and 4.5 pct for polycrystals at temperatures close toA f . In single crystals high elasticity is retained to at least 100°C aboveA f but in polycrystals it decreases rapidly aboveA f . The strain-memory effect occurs on deformation belowM s with subsequent heating betweenA s andA f . The two effects are complementary, such that when one is large the other is small and vice versa. The total pseudoelastic and strain-memory recoveries are normally close to 100 pct. Both effects can be explained on the basis of the formation of a particular variant of the martensite giving significant elongations to the specimens. For pseudoelasticity, the initial structure is theβ phase and the oriented martensite reverts to theβ phase on removal of the stress. In the strain-memory effect the initial structure is oriented thermal martensite and the oriented martensite disappears only on heating to betweenA s andA f so that the martensite reverts to theβ matrix. L. C. BROWN, currently on leave from the Department of Metallurgy, University of Melbourne, Victoria, Australia  相似文献   

3.
Stabilization and two-way shape memory effect in Cu-Al-Ni single crystals   总被引:3,自引:0,他引:3  
The two-way shape memory effect (TWME) induced by stabilization of the martensite phase during aging has been studied in Cu-13.4 Al-4.0 Ni (mass pct) single crystals. The influence of the degree of long-range order on the transformation has been determined by using different heat treatments. The transformation temperatures are strongly influenced by the degree of order in the austenite: annealing from above or below the second neighbor L21 ordering temperature changes the M s by more than 100 °C. It has been established that the diffusion in the austenite as well as in the martensite phase is considerably slower in this alloy than in other Cu-based ones, due to the presence of Ni. The obtained TWME has a similar efficiency as when other more complex thermomechanical trainings are made. In this alloy, the TWME by stabilization is not complete, in contrast to that in Cu-Zn-Al single crystals.  相似文献   

4.
The shape-memory characteristics in the Ni41.3Ti38.7Nb20 alloy have been investigated by means of cryogenic tensile tests and differential scanning calorimetry measurement. The martensite start temperature M s could be adjusted to around the liquid nitrogen temperature by controlling the cooling condition. The reverse transformation start temperature A′ s rose to about 70 °C after the specimens were deformed to 16 pct at different temperatures, where the initial states of the specimens were pure austenite phase, martensite phase, or duplex phase. The shape-memory effect and the reverse transformation temperatures were studied on the specimens deformed at (M s +30 °C). It was found that once the specimens deformed to 16 pct, a transformation hysteresis width around 200 °C could be attained and the shape recovery ratio could remain at about 50 pct. The Ni41.3Ti38.7Nb20 alloy is a promising candidate for the cryogenic engineering applications around the liquid nitrogen temperature. The experimental results also indicated that the transformation temperature interval of the stress-induced martensite is smaller by about one order of magnitude than that of the thermal-induced martensite.  相似文献   

5.
A gold alloy with 18 wt pct Cu and 6 wt pct Al undergoes a reversible displacive phase transformation between an incompletely ordered L21 parent phase and a tetragonal product. The characteristics of these transformations were studied using acoustic emission, dilatometry, X-ray diffraction, and metallography. The morphology of the transformation products, the structure of the parent phase, and the generation of significant acoustic emission during the transformations indicate that they are at least quasi-martensitic, if not martensitic, and that this system is an example of a β-phase shape-memory alloy (SMA). The onset temperatures of the transformations depend on the prior thermal history of the sample. The martensite start (M s ) temperature is between 30 °C and 20 °C. The system exhibits hysteresis and will revert to the parent phase when reheated, with an austenite start (A s ) temperature between 55 °C and 80 °C. However, freshly cast or solution-annealed and quenched samples of the alloy do not transform to the tetragonal phase. Aging of such material at temperatures between 30 °C and 200 °C is required before they will manifest the displacive transformation. The “martensite” phase is considerably more resistant to aging-induced stabilization than that of most other SMAs.  相似文献   

6.
Precipitation sequences in a Cu-14 pct Al-4 pct Ni (wt pct) shape memory alloy were studied by means of transmission electron diffraction and microscopy as well as X-ray microanalysis techniques. On aging thin foil specimens up to 550 °C in the electron microscope, an as-quenched sample having a mixture of 2H-type and D03-type metastable structures transformed to the stable simple cubic γ2 phase at or above 450 °C. The remaining matrix either showed precipitates of the fcc α-phase on prolonged annealing at 500 to 550 °C for a longer period, or transformed to martensite on cooling below theM s temperature (~150 °C).  相似文献   

7.
High-strength Cu-Ni-Sn alloys by thermomechanical processing   总被引:5,自引:0,他引:5  
The influence of prior cold work on the aging characteristics and mechanical properties response for copper-rich alloys in the Cu-Ni-Sn system has been investigated. It has been established15,16 that there exists a spinodal mode of decomposition below a critical temperatureT R, 200 to 300°C below the equilibrium phase boundary in this system. Significant age hardening response is observed in this region; however, fracture ductility is severely impaired due to a grain boundary precipitate network which develops after relatively short aging times. Cold work prior to low temperature aging is found to have relatively little influence on the incubation time for this embrittling network. It does, however, profoundly enhance the kinetics of the continuous (spinodal) transformation. It is observed that for broad variations in composition, critical combinations of prior cold work, aging time and temperature yield material with unique combinations of. yield stress and fracture ductility (for example, a Cu-9 wt pct Ni-6 wt pct Sn alloy may be processed to exhibit an 0.01 pct offset yield of 174,000 psi in conjunction with a 55 pct R.A. on fracture; significantly higher 0.01 pct offset yield values may be achieved at some reduction in fracture ductility for other NiJSn ratios). It is concluded that the resultant ductileJbrittle properties response is a consequence of a critical compctitive balance between amplitude development in the modulated structure and nucleation of the grain boundary network. The minimum level of prior cold work required to effect this balance in the Cu-9 wt pct Ni-6 wt pct Sn alloy is 75 pct R.A. The present levels of yield stressJfracture ductility values reported, to the best of our knowledge, are unsurpassed by those of any other copper-base alloy system (at a significant cost reduction to the Cu-Be alloys) and suggest the potential yet to be realized in other systems exhibiting this mode of decomposition.  相似文献   

8.
Aging effects in a Cu-12Al-5Ni-2Mn-1Ti shape memory alloy   总被引:5,自引:0,他引:5  
The isothermal aging effects in an as-quenched Cu-11.88Al-5.06Ni-1.65Mn-0.96Ti (wt pct) shape memory alloy at temperatures in the range 250 °C to 400 °C were investigated. The changes in the state of atomic order and microstructural evolutions were traced by means of in situ X-ray diffraction and electrical resistivity measurements, as well as transmission electron microscopy (TEM) and optical observations. The kinetics of the aging process, i.e., the temperature and time dependence of the properties including hardness, resistivity, martensitic transformation temperatures, and shape memory capacity were characterized, and at least three temperature-dependent aging stages were distinguished: (1) D03 or L21 atomic reordering, which causes the martensitic transformation temperatures to shift upward and leads the M18R martensite to tend to be a N18R type structure; (2) formation of solute-depleted bainite which results in a drastic depression in martensitic transformation temperatures and loss of the shape memory capacity, accompanied by the atomic disordering in both the remaining parent phase and bainite; and (3) precipitation of the equilibrium α and γ 2 phases and destruction of the shape memory capacity.  相似文献   

9.
The reverse martensitic transformation and aging processes in a polycrystalline Cu-23.52 at. pct Zn-9.65 at. pct Al shape-memory alloy have been studied using the recently developed modulated differential scanning calorimetry (MDSC) technique, and some new findings are obtained. By separating the nonreversing heat flow from the reversing heat flow, MDSC can better characterize the thermodynamic, kinetic, and hysteretic features of thermoelastic martensitic transformations. Two kinds of exothermal relaxation peaks have been identified and separated from the endothermal reverse martensitic transformation: one is associated with the movement of twin interfaces or martensite-parent interfaces, and another is due to the atomic reordering in the parent phase via a vacancy mechanism. The martensite aging processes have been examined, and two stages of the aging process been distinguished: the first stage of aging is characterized by the stabilization of martensite, as manifested in the increase in the reversing enthalpy of the reverse martensitic transformation and in the transformation temperatures, and the second stage is, in fact, the decomposition of the martensite on prolonged aging, accompanied by a decrease in the transformation enthalpy. The results suggest that the mechanisms of the relaxation in the martensite and in the parent phase may be quite different.  相似文献   

10.
The shape memory effect associated with the reverse transformation of deformed martensite, pseudoelastic behavior involved in stress-induced martensite formation and the reversion of strained martensite after an applied stress is relaxed aboveA f have been studied. Grain size and specimen geometry effects have been related to the above phenomena. Although recoverable strains as high as 10.85 pct were observed in coarse-grained (“bamboo” type) specimens, the shape memory effect is restricted in fine-grained specimens because of permanent grain boundary deformation and intergranular fracture which occurs at relatively low strains. A fine grain size also acts to suppress pseudoelastic behavior because permanent, localized deformation is generated concurrent with the formation of stress-induced martensite which inhibits reversion of the latter upon release of stress. The apparent plastic deformation of martensite belowM f can be restored by transforming back to the original parent phase by heating toA f (shape memory) or alternatively, can be recovered belowM f by applying a small stress of opposite sign. Martensite deformed belowM f with the same stress maintained while heating persists aboveA f, but reverts to the parent phase in a pseudoelastic manner when the stress is relieved. The athermal thermoelastic martensite, which forms in groups composed of four martensite plate variants, undergoes several morphology changes under deformation. One of the variants within a plate group cluster may grow with respect to the others, and eventually form a single crystalline martensitic region. At a later stage pink colored deformation bands form in the same area and join up with increasing stress, resulting in thermally irreversible kinks. The clusters of plate groups may expand like grain growth or contract as a whole during deformation, or act as immobile “subgrains” which lead to permanent deformation at their boundaries. Stress-induced martensite usually forms as one variant of parallel plates which join up with increasing stress to form single crystalline regions. Further stress leads to pink colored deformation bands, similar to those in the deformed athermal martensite. Other similarities and differences between the stress-induced and athermal martensite have been investigated and are discussed. Formerly with the University of Illinois at Urbana-Champaign  相似文献   

11.
The martensite ⇌ austenite transformations were investigated in Fe-Ni-Co alloys containing about 65 wt pct Fe and up to 15 wt pct Co. A change in morphology of martensite from plate-like to lath-type occurred with increasing cobalt content; this change in morphology correlates with the disappearance of the Invar anomaly in the austenite. The martensite-to-austenite reverse transformation differed depending on martensite morphology. Reversion of plate-like martensite was found to occur by simple disintegration of the martensite platelets. Reverse austenite formed from lath-type martensite was not retained when quenched from much aboveA s, with microcracks forming during theM→γ→M transformation.  相似文献   

12.
The change and transition process in transformation kinetics from a nonthermoelastic to a thermoelastic type accompanying an increase in parent phase order in Fe-Pt alloys near the stoichiometric composition Fe3Pt has been investigated, using Fe-23, 24 and 25 at. pct Pt alloys. The thermal hysteresis,M s temperature, martensite tetragonality and transformation volume change have been measured for specimens with various degrees of order, and correlations among these factors are discussed. The results indicate that the martensite tetragonality, or equivalently the.degree of order of the parent phase, is not the dominant factor which dictates a thermoelastic transformation. TheM s tempera-ture appears to play an important role in the transformation kinetics, and must be lower than a certain value to obtain a thermoelastic transformation in Fe-Pt alloys. formerly Research Assistant at the University of Illinois at Urbana-Champaign, Urbana, IL  相似文献   

13.
The influence of prior cold work on the aging characteristics and mechanical properties response for copper-rich alloys in the Cu-Ni-Sn system has been investigated. It has been established15,16 that there exists a spinodal mode of decomposition below a critical temperatureT R, 200 to 300°C below the equilibrium phase boundary in this system. Significant age hardening response is observed in this region; however, fracture ductility is severely impaired due to a grain boundary precipitate network which develops after relatively short aging times. Cold work prior to low temperature aging is found to have relatively little influence on the incubation time for this embrittling network. It does, however, profoundly enhance the kinetics of the continuous (spinodal) transformation. It is observed that for broad variations in composition, critical combinations of prior cold work, aging time and temperature yield material with unique combinations of. yield stress and fracture ductility (for example, a Cu-9 wt pct Ni-6 wt pct Sn alloy may be processed to exhibit an 0.01 pct offset yield of 174,000 psi in conjunction with a 55 pct R.A. on fracture; significantly higher 0.01 pct offset yield values may be achieved at some reduction in fracture ductility for other NiJSn ratios). It is concluded that the resultant ductileJbrittle properties response is a consequence of a critical compctitive balance between amplitude development in the modulated structure and nucleation of the grain boundary network. The minimum level of prior cold work required to effect this balance in the Cu-9 wt pct Ni-6 wt pct Sn alloy is 75 pct R.A. The present levels of yield stressJfracture ductility values reported, to the best of our knowledge, are unsurpassed by those of any other copper-base alloy system (at a significant cost reduction to the Cu-Be alloys) and suggest the potential yet to be realized in other systems exhibiting this mode of decomposition.  相似文献   

14.
The martensitic transformation and shape memory effect of Ti50(Pt, Ir)50 with 5?C37.5 at. pct Ir were investigated using differential thermal analysis (DTA), high-temperature X-ray diffraction (HT-XRD), and compression tests. The austenite finish temperature, A f, increased with increasing Ir content from 1331?K (1058?°C) in Ti-50 at. pct Pt to 1491?K (1218?°C) in Ti-12.5Pt-37.5Ir. The structure of the parent and martensite phases was identified as B2 and B19 in all tested alloys. A large strain recovery rate was obtained in Ti50(Pt, Ir)50 with 10 to 30 at. pct Ir. The highest shape recovery ratio was 57?pct in Ti-25Pt-25Ir after deformation at 1123?K (850?°C), followed by heating to above A f. Using HT-XRD, the dependence of lattice parameter change on Ir content and temperature was investigated. The volume change during phase transformation from B2 to B19 was estimated using the lattice parameter of the B2 and B19 phases. Strain recovery is discussed along with volume change and lattice parameter change.  相似文献   

15.
Transformational elasticity in a polycrystalline Cu-Zn-Sn alloy   总被引:1,自引:0,他引:1  
A study has been made of the transformational elasticity in a polycrystalline Cu-33.6 wt pct Zn-4 wt pct Sn alloy. The magnitude of the transformational elasticity was markedly dependent on the grain size/thickness ratio of the sample. Large reversible strains (<2.5 pct) were realized for samples in which the grains extend through the sample thickness. Samples with a smaller gs/t ratio exhibited very limited transformational elasticity. The gs/t ratio, considered to be a measure of the grain constraint, also affected the Ms, Mb, and AI temperatures. Although the stress-strain curves appeared quite reproducible after 4 loading-unloading cycles, some non-recoverable deformation was produced with each cycle. This permanent deformation was cumulative during extended cycling, giving rise to a decreasing amount of reversible strain. Increased cycling also reduced the load-unload hysteresis of the stress-strain curves.  相似文献   

16.
The effect of Co addition has been studied in Fe-30Mn-6Si-xCo (x = 0 to 9 wt pct) shape memory alloys in terms of their microstructure, martensitic transformation and shape recovery. Microstructural investigations reveal that in Fe-Mn-Si-Co alloys, the microstructure remains single-phase austenite (??) up to 5 pct Co and beyond that becomes two-phase comprising ?? and off-stoichiometric (Fe,Co)5Mn3Si2 intermetallic ??-phases. The forward ??-?? martensite transformation start temperature (M S) decreases with the addition of Co up to 5 pct, and alloys containing more than 5 pct Co, show slightly higher M S possibly on account of two-phase microstructure. Unlike M S, the ??-?? reverse transformation start temperature (A S) has been found to remain almost unaltered by Co addition. In general, addition of Co to Fe-Mn-Si alloys deteriorates shape recovery due to decreasing resistance to plastic yielding concomitant with the formation of stress induced ?? martensite. However, there is an improvement in shape recovery beyond 5 pct Co addition, possibly due to the strengthening effect arising from the presence of (Fe,Co)5Mn3Si2 precipitates within the two-phase microstructure and due to higher amount of stress induced ?? martensite.  相似文献   

17.
A nanostructured surface layer was formed in Fe-30 wt pct Ni alloy by surface mechanical attrition treatment (SMAT). The microstructure of the surface layer after SMAT was investigated using optical microscopy, X-ray diffraction, and transmission electron microscopy. The analysis shows that the nanocrystallization process at the surface layer starts from dislocation tangles, dislocation cells, and subgrains to highly misoriented grains in both original austenite and martensite phases induced by strain from SMAT. The magnetic properties were measured for SMAT Fe-30 wt pct Ni alloy. The saturation magnetization (M s ) and coercivity (H c ) of the nanostructured surface layers increase significantly compared to the coarse grains sample prior to SMAT. The increase of M s for SMAT Fe-30 wt pct Ni alloy was attributed to the change of lattice structure resulting from strain-induced martensitic transformation. Meanwhile, H c was further increased from residual microstress and superfined grains. These were verified by experiments on SMAT pure Ni and Co metal as well as liquid nitrogen-quenched Fe-30 wt pct Ni alloy.  相似文献   

18.
The shape memory effect associated with the reverse transformation of deformed martensite, pseudoelastic behavior involved in stress-induced martensite formation and the reversion of strained martensite after an applied stress is relaxed aboveA f have been studied. Grain size and specimen geometry effects have been related to the above phenomena. Although recoverable strains as high as 10.85 pct were observed in coarse-grained (“bamboo” type) specimens, the shape memory effect is restricted in fine-grained specimens because of permanent grain boundary deformation and intergranular fracture which occurs at relatively low strains. A fine grain size also acts to suppress pseudoelastic behavior because permanent, localized deformation is generated concurrent with the formation of stress-induced martensite which inhibits reversion of the latter upon release of stress. The apparent plastic deformation of martensite belowM f can be restored by transforming back to the original parent phase by heating toA f (shape memory) or alternatively, can be recovered belowM f by applying a small stress of opposite sign. Martensite deformed belowM f with the same stress maintained while heating persists aboveA f, but reverts to the parent phase in a pseudoelastic manner when the stress is relieved. The athermal thermoelastic martensite, which forms in groups composed of four martensite plate variants, undergoes several morphology changes under deformation. One of the variants within a plate group cluster may grow with respect to the others, and eventually form a single crystalline martensitic region. At a later stage pink colored deformation bands form in the same area and join up with increasing stress, resulting in thermally irreversible kinks. The clusters of plate groups may expand like grain growth or contract as a whole during deformation, or act as immobile “subgrains” which lead to permanent deformation at their boundaries. Stress-induced martensite usually forms as one variant of parallel plates which join up with increasing stress to form single crystalline regions. Further stress leads to pink colored deformation bands, similar to those in the deformed athermal martensite. Other similarities and differences between the stress-induced and athermal martensite have been investigated and are discussed.  相似文献   

19.
The variation of the kinetics of the martensite transformation with carbon content and martensite habit plane has been investigated in several Fe−Ni based alloys. Transformation in an Fe-25 wt pct Ni-0.02 wt pct C alloy exhibits predominantly athermal features, but some apparently isothermal transformation also occurs. In a decarburized alloy, on the other hand, the observed kinetic features, such as the dependence ofM s on cooling rate, were characteristic of an isothermal transformation. In contrast, Fe-29.6 wt pct Ni-10.7 wt pct Co alloys with carbon contents of 0.009 wt pct C and 0.003 wt pct C transform by burst kinetics to {259}γ plate. At both these carbon levels, theM b temperatures of the Fe−Ni−Co alloys are independent of cooling rate. It is proposed that the change in kinetic behavior of the Fe-25 pct Ni alloy with the different carbon contents is due to the occurrence of dynamic thermal stabilization in the higher carbon alloy. Dynamic thermal stabilization is relatively unimportant in the Fe−Ni−Co alloys which transform by burst kinetics to {259}γ plate martensite. P. J. FISHER, formerly with the University of New South Wales D. J. H. CORDEROY, formerly with the University of New South Wales  相似文献   

20.
Data on the temperature and composition dependence of the magnetic moment and Curie temperature of several Fe-Ni-Co and Fe-Ni-Mn alloys have been obtained. The temperature dependence of the magnetization was obtained for each alloy from 298 to 873 K, following the magnetization change through the transformation from martensite to austenite. The effect of cobalt and manganese additions to an Fe-29.9 at. pct Ni alloy on the reverse transition temperature,A s , the Curie temperature,T c , and the saturation magnetization at absolute zero, ρso, has been determined, Values forA s , T c , and ρso were obtained by fitting a Brillouin function to the respective contributions of austenite and martensite to the total magnetization. This technique represents a very sensitive method of obtaining transition temperatures and the respective amounts of each phase present in the alloys. A theoretical prediction of ρso andT c was in agreement with the experimentally determined values.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号