首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Copolymers of methyl methacrylate (MMA) and pentafluorophenyl methacrylate (PFPMA) of various compositions were prepared with a free‐radical initiator. When PFPMA was included in the copolymers, the glass‐transition temperatures increased and showed a positive deviation from the Gordon–Taylor equation. A copolymer containing 20 wt % PFPMA exhibited almost zero orientational birefringence, and the photoelastic birefringence became zero when the copolymer contained 13 wt % PFPMA. When 20 wt % PFPMA was incorporated into the MMA copolymer, its water absorption decreased to 0.4 wt % versus 1.8 wt % for poly(methyl methacrylate) (PMMA) under the same condition. The flammability of the PFPMA/MMA copolymer was reduced in comparison with that of the MMA homopolymer. The refractive indices of the PFPMA/MMA copolymers were very close to that of PMMA, and the transmittances of the copolymers were slightly better than that of PMMA. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007  相似文献   

2.
合成了乙烯-辛烯共聚物(POE)和甲基丙烯酸甲醋(MMA)-丙烯腈(SAN)-苯乙烯(St)的接枝共聚物(POE-g-MAS)。研究了单体比率、POE/单体比率和引发剂浓度等因素对接枝共聚合反应的影响。聚合产物用丙酮抽提得到接枝共聚物POE-g-MAS,傅里叶变换红外光谱分析证明MMA-AN-St已经接枝在POE分子链上。用POE-g-MAS与Stet树脂共混制备了具有高抗冲性能的POE-g-SAN/SAN共混物,并用扫描电镜观察共混物的冲击断面,探讨了其增韧机理。  相似文献   

3.
Co- and terpolymers containing dimethylaminoethyl methacrylate (DMAEMA), methyl methacrylate (MMA), and 2-hydroxyethyl methacrylate (HEMA) were prepared by solution polymerization, and characterized by dilute solution viscometry and proton and carbon-13 nuclear magnetic resonance spectroscopy. Polymers were prepared containing 75, 60, 40, 25, and 10 mol % DMAEMA but with differing levels of MMA and HEMA. Polymer solutions were titrated under nitrogen to obtain variations of pKb with alpha (the extent of protonation of the DMAEMA residue). From these experiments, we were able to show that, as expected, the cooperative nature of the ionization process decreased as the level of DMAEMA in the polymer was reduced from 75 mol % to 10 mol %. By comparing polymers containing similar amounts of DMAEMA monomer, we were also able to show that base strength increased with the polarity of the uncharged portion of the polymer, in other words, that polymers containing higher levels of HEMA were stronger bases than polymers containing higher levels of MMA. This effect was rationalized by assuming that higher contents of the more polar HEMA monomer facilitated the coil expansion that accompanied the process of ionization, thus increasing charge separations at corresponding values of alpha and increasing base strength.  相似文献   

4.
由种子乳液聚合法制备了聚苯乙烯-聚甲基丙烯酸甲酯核-壳粒子。以过硫酸钾(KPS)为引发剂,辛基酚聚氧乙烯醚(OP-10)为乳化剂,合成了聚苯乙烯(PS)种子核;连续滴加甲基丙烯酸甲酯(MMA),在核表面富集MMA,制备了粒径范围在0.16~0.67μm的核-壳粒子;当单体苯乙烯与甲基丙烯酸甲酯(St/MMA)的比为30∶70(质量比)时,所得粒径在0.18μm,粒径分布为0.012。差示扫描量热(DSC)研究显示,复合粒子的玻璃化转变温度(Tg)为97.2℃,峰形单一,表现出良好的热性能。  相似文献   

5.
Mamoru Ai   《Catalysis Today》2006,111(3-4):398-402
The formation of methyl methacrylate (MMA) was studied in a vapor-phase reaction between methyl propionate (MP) and methanol without using any sources of formaldehyde. Silica-supported CsOH doped with a small amount of silver Ag was found to be the best catalyst. The optimum Ag/Cs/Si atomic ratio was 4–10/20–25/1000. When the reaction was performed in the absence of oxygen in the feed, the main product was methyl isobutyrate (MIB) at the beginning of the reaction; MMA was not obtained. As the time-on-stream increased, the formation of MIB fell, while that of MMA increased, showed a maximum, and then decreased gradually. In the case of the reaction performed in the presence of oxygen, the catalytic activity was stable. As the amount of oxygen increased, the yield of MMA increased, while the selectivity fell. The performances were further improved by the combination of a small amount of Ag–Cs/SiO2 catalyst and a large amount of Cs/SiO2 catalyst.  相似文献   

6.
采用直流电弧等离子体法制备纳米铁粉,利用甲基丙烯酸(MAA)和盐酸处理纳米铁粉,通过乳液聚合方法,在纳米铁粉存在下MMA原位聚合,形成纳米铁/聚甲基丙烯酸甲酯复合粒子。分析结果表明,MMA在纳米铁粒子表面接枝聚合,纳米铁粉表面的双键参与了聚合反应,所形成的复合粒子具有核壳结构,这种复合粒子具有较高的稳定性。  相似文献   

7.
The AB-crosslinked copolymer was prepared as a transparent material from toluene diisocyanate (TDI) or hexamethane diisocyanate (HDI), triethylene glycol (TEG), hydroxyethyl methacrylate (HEMA), and methyl methacrylate (MMA). The optical transmission, impact resistance, thermal mechanical properties, and morphology of the copolymer were studied. The results indicate that this material has a microheterogeneous structure with the dispersed phase size no more than 0.1 μm. © 1994 John Wiley & Sons, Inc.  相似文献   

8.
This paper reports the synthesis, characterization, and evaluation of copolymers of methyl methacrylate (MMA) and hexyl methacrylate (HMA) and of HMA and methyl α-chloroacrylate (MCA) and of terpolymers of MMA, MCA, and HMA as electron-sensitive positive resists. The sensitivities of the resists were found to be strongly dependent on the composition. Two of the terpolymers were found to be significantly more sensitive than poly(methyl methacrylate) (PMMA).  相似文献   

9.
The grafting of the methyl methacrylate (MMA) monomer onto natural rubber using potassium persulfate as an initiator was carried out by emulsion polymerization. The rubber macroradicals reacted with MMA to form graft copolymers. The morphology of grafted natural rubber (GNR) was determined by transmission electron microscopy and it was confirmed that the graft copolymerization was a surface‐controlled process. The effects of the initiator concentration, reaction temperature, monomer concentration, and reaction time on the monomer conversion and grafting efficiency were investigated. The grafting efficiency of the GNR was determined by a solvent‐extraction technique. The natural rubber‐g‐methyl methacrylate/poly(methyl methacrylate) (NR‐g‐MMA/PMMA) blends were prepared by a melt‐mixing system. The mechanical properties and the fracture behavior of GNR/PMMA blends were evaluated as a function of the graft copolymer composition and the blend ratio. The tensile strength, tear strength, and hardness increased with an increase in PMMA content. The tensile fracture surface examined by scanning electron microscopy disclosed that the graft copolymer acted as an interfacial agent and gave a good adhesion between the two phases of the compatibilized blend. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 428–439, 2001  相似文献   

10.
New side-chain poly(methacrylate)s with azo moieties were prepared by free radical copolymerization, starting from methyl methacrylate (MMA) and some original azo-monomers. The chromophore content was evaluated from 1H-NMR spectroscopy and elemental analyses; all structures exhibited a high content of azobenzene units. UV–Vis measurements have also supported this fact. Reactivity ratios for the methacrylate systems and their corresponding Qe values were calculated based on several initial feed compositions (MMA and the newly synthesized azo-monomers) using an integral method with its appropriate software. The polymers were also characterized by FTIR, SEC and DSC-TGA techniques. The coloured poly(methacrylate)s exhibited glass transition temperatures between 141 and 168 °C and thermal stabilities up to 306 °C.  相似文献   

11.
The emulsifier‐free emulsion polymerization of methyl methacrylate (MMA) was conducted with microwave irradiation. Superfine and monodisperse poly(methyl methacrylate) (PMMA) microspheres were obtained. Microwave irradiation notably promoted the polymerization reaction. This phenomenon was ascribed to the acceleration of the initiator [potassium persulfate (KPS)] decomposition by microwave irradiation. The experimental results revealed that the apparent activation energy of KPS decomposition decreased from 128.3 to 106.0 kJ/mol with microwave irradiation. The average particle size of the prepared PMMA latex was mainly controlled with the MMA concentration; it increased linearly from 103 to 215 nm when the MMA concentration increased from 0 to 0.3 mol/L and then remained almost constant at MMA concentrations of 0.3–1.0 mol/L. The KPS concentration had no effect on the average particle size, but the particle size dispersity was significantly reduced by a high KPS concentration. With a mixed polymerization phase (water/acetone = 1:3 v/v) or a redox initiation system, PMMA nanoparticles were obtained with an average particle size of 45 or 67 nm, respectively. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 2815–2820, 2004  相似文献   

12.
Wood–polymer composites (WPC) of rubberwood (Hevea brasiliensis), were prepared by impregnating the wood with methyl methacrylate (MMA), and the combinations of MMA and diallyl phthalate (MMA/DAP). Polymerization was carried out by catalyst heat treatment. Impregnated samples showed significant improvements in compressive and impact strengths, hardness, and dimensional stability (toward water) over that the untreated rubberwood. © 1995 John Wiley & Sons, Inc.  相似文献   

13.
The feasibility of high-pressure atom transfer radical polymerization (ATRP) for synthesizing well-defined polymers of extraordinarily high molecular weights was demonstrated. ATRP of methyl methacrylate (MMA) under pressures up to 500 MPa was investigated at 60 °C. The addition of a small amount of a Cu(II)Cl2/ligand complex along with the general benefits of high pressure of enhancing propagation and suppressing termination brought about an excellent control of polymerization even with an extremely low concentration of ATRP initiator. For example, there was produced PMMA with a number-average molecular weight Mn of 3.6 × 106 and a polydispersity index of 1.24, which had never been achieved by conventional ATRP.  相似文献   

14.
This study involved the use of an amphipathic graft copolymer, poly(methyl methacrylate-co-2-hydroxypropyl methacrylate)–graft–polyoxyethylene, as a stabilizer in the emulsion polymerization of methyl methacrylate. The stabilizing effectiveness of this graft copolymer was studied as a function of its chemical structure. It was found that the stabilizing effectiveness of the graft copolymer was independent of the molecular weight of the backbone within the investigated range of 4 × 103 g/mol to 2 × 104 g/mol. In all cases, stable emulsion polymerizations of methyl methacrylate were observed. Effective stabilization also occurred when the graft moieties possessed a molecular weight of either 2 × 103 g/mol or 5 × 103 g/mol. However, the stabilizing effectiveness was found to be dependent on the amount of polyoxyethylene (POE) contained in the graft copolymer. In this case, graft copolymers possessing 67% by weight POE were poor stabilizers, but ones with 85% POE were very good stabilizers. Moreover, the graft copolymers were found to be superior stabilizers as compared to POE homopolymers.  相似文献   

15.
To obtain silk weight gain and to improve silk properties, Bombyx mori silks were grafted with either 2‐hydroxyethyl methacrylate (HEMA) or methyl methacrylate (MMA). The moisture regain of the HEMA‐grafted and MMA‐grafted silks depended on the hydrophilicity of the used monomers. The acid and alkaline resistances of the HEMA‐grafted and MMA‐grafted silks were clearly improved. Both commercial synthetic dyes, that is, acid and reactive dyes, and a natural dye extracted from turmeric, with potassium aluminum sulfate as a mordant, were used in this study. The results suggested that the dye uptake increased in the presence of poly(2‐hydroxyethyl methacrylate) or poly(methyl methacrylate) in the silk fibroin structures when acid and curcumin dyes were used. The washfastness level of the HEMA‐grafted silk dyed by acid and reactive dyes was similar to that of the degummed silk. However, the colorfastness to washing of the MMA‐grafted silk dyed by an acid dye was improved when the polymer add‐on concentration was 65%. In addition, the washfastness for both grafted silks was improved when they were dyed with natural curcumin dyestuff. The acid and alkaline perspiration fastness properties remained unchanged for the HEMA‐grafted and MMA‐grafted silks when acid, reactive, and curcumin dyes were applied. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

16.
In this study, polymethacrylate polymers were synthesized by free‐radical polymerization for use as pour point depressants in lubricant oil, and their low‐temperature properties were investigated. Four methacrylate monomers were synthesized by the esterification of methyl methacrylate (MMA) with four kinds of fatty alcohols. The purification step was performed to prepare the pure monomers. Two polymerization experiments were carried out with four kinds of methacrylate monomers obtained previously and MMA. Copolymers, which were made from one kind of monomer and MMA, and terpolymers, which were made from two kinds of monomers and MMA, were prepared. The molecular structures of the synthesized methacrylate monomers and polymethacrylate polymers were verified by 1H‐NMR, and the molecular weight data were obtained by gel permeation chromatography. The pour points of the base oils containing 0.1 wt % polymethacrylate polymers were measured according to ASTM D 97‐93. The pour points of most base oils containing each polymer decreased compared to that of the pure base oil. Particularly, poly(dodecyl methacrylate‐co‐hexadecyl methacrylate‐co‐methyl methacrylate), made of dodecyl methacrylate, hexadecyl methacrylate, and MMA at a molar ratio of 3.5 : 3.5 : 3, showed the best low‐temperature properties. This terpolymer dropped the pour point of the base oil by as much as 23°C, and its yield was 93.5%. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

17.
J.R. Ebdon 《Polymer》1974,15(12):782-786
220MHz proton magnetic resonance (p.m.r.) spectra of some free-radically prepared methyl methacrylate-chloroprene copolymers have been recorded. The intensities of the -methyl signals are related to the relative proportions of various methyl methacrylate (MMA) centred triads. Triad fractions obtained from the -methyl signals indicate that the Mayo-Lewis copolymerization scheme is not strictly applicable to this system, and are in good agreement with those calculated from the penultimate reactivity ratios r11=0.107 ± 0.008, r21 = 0.057 ± 0.004 and r2 = 6.7 ± 0.5 where MMA = monomer 1. However, although a small penultimate group effect is indicated, some deviation from the Mayo-Lewis scheme may be due to the occurrence of anomalous head-head and tail-tail methyl methacrylate-chloroprene linkages.  相似文献   

18.
制备了两种镍配合物二[N-(2-氧基-1-萘甲醛)缩-2,6-二异丙基苯胺]合镍[Ni(L1)2]和二[N-(2-氧基-1-萘甲醛)缩-邻甲基苯胺]合镍[Ni(L2)2]。研究了它们以普通烷基铝为助催化剂催化甲基丙烯酸甲酯(MMA)的聚合。结果表明,镍配合物的结构、聚合条件如单体浓度、Al与Ni物质的量比、聚合温度和聚合时间等对甲基丙烯酸甲酯聚合反应活性有很大的影响,当甲基丙烯酸甲酯浓度为0.8 mol·L-1、n(Al)∶n(Ni)=400、温度为0 ℃时,催化活性达到110.7 kg-PMMA·(mol-Ni·h)-1。随着聚合时间的延长,催化活性下降,而转化率则随着聚合时间的延长而缓慢增加。  相似文献   

19.
Polymer/Silica nanocomposite latex particles were prepared by emulsion polymerization of methyl methacrylate (MMA) with dimethylaminoethyl methacrylate (DM). The reaction was performed using a nonionic surfactant and in the presence of silica nanoparticles as the seed. The polymer‐coated silica nanoparticles with polymer content and number average particle sizes ranged from 32 to 93 wt % and 114–310 nm, respectively, were obtained depending on reaction conditions. Influences of some synthetic conditions such as MMA, DM, surfactant concentration, and the nature of initiator on the coating of the silica nanoparticles were studied. Electrostatic attraction between anionic surface of silica beads and cationic amino groups of DM is the main driving force for the formation of the nanocomposites. It was demonstrated that the ratio of DM/MMA is important factor in stability of the system. The particle size, polymer content, efficiency of the coating reaction, and morphology of resulted nanocomposite particles showed a dependence on the amount of the surfactant. Zeta potential measurements confirmed that the DM was located at the surface of the nanocomposites particles. Thermogravimeteric analysis indicated a relationship between the composition of polymer shell and polymer content of the nanocomposites. The nanocomposites were also characterized by FTIR and differential scanning calorimetry techniques. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号