首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Wireless links differ from traditional ‘wired’ links in two ways that challenge the existing Internet. On wireless links packet loss or corruption due to transmission errors is not rare, which calls into question the standard Internet assumptions that transmission errors should be corrected by transport‐level protocols at end systems and that end‐to‐end packet loss typically indicates network congestion. Also, the severity and location‐ dependent nature of these errors calls into question the meaning of ‘fair’ scheduling, per‐flow quality of service, and even looser notions such as service level agreements, when applied to wireless links. An important question is whether the two unique problems posed by wireless links can be successfully addressed within the standard Internet architecture, as opposed to requiring new transport protocols designed specifically for wireless links or requiring wireless links to ‘fix up’ the operation of specific end‐to‐end protocols. We provide experimental evidence that a combination of protocol‐blind link‐level local error control, which lessens the damage, and error‐sensitive link scheduling, which ensures sensible outcomes in response to link capacity loss, provides a good operating environment while adhering to traditional Internet design practices. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

2.
In the case of video streaming over wireless channels, burst errors may lead to serious video quality degradation. By jointly exploiting the scheduling mechanism on different communication layers, this paper proposes a quality-aware cross-layer scheduling scheme to achieve unequal error control for each Latency-constraint Frame Set (LFS) of a video stream. After a network-layer agent at base station firstly utilizes the network-layer packet scheduling to provide packet-granularity importance classification for the current LFS, a link-layer agent at base station further utilizes the Radio-Link-Unit (RLU) scheduling to implement finer selective retransmission of the current LFS. Under scheduling delay and bandwidth constraints, the proposed scheme can be aware of the application-layer quality and time-varying channel conditions, and hence burst errors can simply be shifted to lower-priority transmission units in the current LFS. Simulation results demonstrate that the proposed scheme has strong robustness against burst errors, and thus improves the overall received quality of the video stream over wireless channels.  相似文献   

3.
TCP is suboptimal in heterogeneous wired/wireless networks because it reacts in the same way to losses due to congestion and losses due to link errors. In this paper, we propose to improve TCP performance in wired/wireless networks by endowing it with a classifier that can distinguish packet loss causes. In contrast to other proposals we do not change TCP’s congestion control nor TCP’s error recovery. A packet loss whose cause is classified as link error will simply be ignored by TCP’s congestion control and recovered as usual, while a packet loss classified as congestion loss will trigger both mechanisms as usual. To build our classification algorithm, a database of pre-classified losses is gathered by simulating a large set of random network conditions, and classification models are automatically built from this database by using supervised learning methods. Several learning algorithms are compared for this task. Our simulations of different scenarios show that adding such a classifier to TCP can improve the throughput of TCP substantially in wired/wireless networks without compromizing TCP-friendliness in both wired and wireless environments.  相似文献   

4.
This paper considers a wireless system in which different sessions may use different channels with different transmission characteristics. A general framework for admission control and scheduling that provides stochastic delay and packet drop guarantees in this error-prone wireless system is proposed. By "general," the authors mean that the scheduling policies from a large class can be plugged in this framework and that admission control conditions can be obtained for different arrival processes. This enables the use of many scheduling policies that have not been considered so far for error-prone wireless systems. Using large deviation bounds and renewal theory, the authors prove that once a session i is admitted, irrespective of the scheduling policy and the channel errors experienced by other sessions, i obtains its desired quality of service. The admission control algorithm uses only individual channel statistics of sessions and not joint statistics, and the scheduling does not require any knowledge of instantaneous channel states  相似文献   

5.
Wireless LAN technologies such as IEEE 802.11a and 802.11b support high bandwidth and multi-rate data transmission to match the channel condition (i.e., signal to noise ratio). While some wireless packet fair queuing algorithms to achieve the per-flow throughput fairness have been proposed, they are not appropriate for guaranteeing QoS in multi-rate wireless LAN environments. We propose a wireless packet scheduling algorithm that uses the multi-state (multi-rate) wireless channel model and performs packet scheduling by taking into account the channel usage time of each flow. The proposed algorithm aims at per-flow protection by providing equal channel usage time for each flow. To achieve the per-flow protection, we propose a temporally fair scheduling algorithm called Contention-Aware Temporally fair Scheduling (CATS) which provides equal channel usage time for each flow. Channel usage time is defined as the sum of the packet transmission time and the contention overhead time due to the CSMA/CA mechanism. The CATS algorithm provides per-flow protection in wireless LAN environments where the channel qualities of mobile stations are dynamic over time, and where the packet sizes are application-dependent. We also extend CATS to Decentralized-CATS (D-CATS) to provide per-flow protection in the uplink transmission. Using an NS-2 simulation, we evaluate the fairness property of both CATS and D-CATS in various scenarios. Simulation results show that the throughput of mobile stations with stable link conditions is not degraded by the mobility (or link instability) of other stations or by packet size variations. D-CATS also shows less delay and less delay jitter than FIFO. In addition, since D-CATS can coordinate the number of contending mobile stations, the overall throughput is not degraded as the number of mobile stations increases. This work was supported in part by the Brain Korea 21 project of Ministry of Education and in part by the National Research Laboratory project of Ministry of Science and Technology, 2004, Korea.  相似文献   

6.
The traditional reliable transport protocols are originally designed for the wired networks, which regard any packet loss as the indication of network congestion and halve their congestion windows to alleviate the traffic overload of network. However, unlike in wired networks, non-congestion losses will severely degrade the performance of traditional transport protocols in wireless networks. Thus some corruption-aware transport protocols have been proposed to overcome the performance degradation caused in the error-prone wireless networks. Unfortunately, the corruption-aware transport protocols cannot work in realistic networks up to now since the corrupted packets will be discarded by the link layer checksum mechanisms before they are delivered to the transport layer. This paper introduces a cross-layer adaptive partial Frame Check Sequence scheme to safely enable the corruption-aware transport protocols in the next generation wireless communications without disabling the link layer 32-bit Cyclic Redundancy Check checksum mechanisms. Simulation results show that the proposed scheme can help the corruption-aware transport protocols to significantly improve their performance compared to that of the existing schemes.  相似文献   

7.
1 Introduction TransportControlProtocol (TCP )asthewidespreadusedtransportprotocolintheInternetapplicationswasdesignedforwirelinenetworkswherethechannelerrorratesareverylowandcon gestionistheprimarycauseofpacketloss.Howev er ,whenTCPconnectionsextendoverwirelesslinks,manyfactorssuchasinterference,multipathfading ,usermobilityandatmosphericconditionsmaycauseerrorsresultinginframelossesoverthewirelesslinksthustheperformanceofTCPisseverelyaffected . TheperformanceofTCPthroughputconsideri…  相似文献   

8.
An Improved Round Robin Packet Scheduler for Wireless Networks   总被引:1,自引:0,他引:1  
Scheduling algorithms are important components for providing quality-of-service (QoS) guarantees in wireless networks. The design of such algorithms need to take into account bursty errors and location-dependent channel capacity that are characteristics of wireless networks. In this paper, a new scheduling algorithm for packet cellular networks, wireless deficit round robin (WDRR), is proposed. WDRR is a round robin scheduler that has low implementation complexity and offers a low delay bound, tight fairness index, and good isolation property. In error-prone channels, the algorithm provides short-term fairness among sessions that perceive a clean channel, long-term fairness among all sessions, ability to meet specified throughput objectives for all sessions, and graceful service degradation among sessions that received excess service. Both analysis and simulation are used to verify the WDRR properties.  相似文献   

9.
一种适用于宽带无线IP网络的分组调度算法   总被引:3,自引:0,他引:3       下载免费PDF全文
纪阳  李迎阳  邓钢  胡健栋  张平 《电子学报》2003,31(5):742-746
自适应调制技术在许多新型的无线分组网络如WCDMA HSDPA、HiperLAN/2中得到广泛采用.本文在充分考虑自适应调制系统链路带宽随时隙呈不平均分布特点的基础上,提出一种全新的调度算法,自适应区分补偿公平队列(ADCFQ).该算法采用了基于工作量的分析方法,设计了不同功能的多个子队列,可以为系统所有待发流提供基本的QoS保证,为各个流公平共享剩余带宽,并能够通过合理的补偿机制克服无线环境中突发错误影响.分析和仿真结果表明,这一算法可以满足目标要求.此外,仿真中,针对自适应链路的特点,本文还提出了一种基于多状态Markov链的信道建模方法.  相似文献   

10.
This paper proposes a power efficient multipath video packet scheduling scheme for minimum video distortion transmission (optimised Video QoS) over wireless multimedia sensor networks. The transmission of video packets over multiple paths in a wireless sensor network improves the aggregate data rate of the network and minimizes the traffic load handled by each node. However, due to the lossy behavior of the wireless channel the aggregate transmission rate cannot always support the requested video source data rate. In such cases a packet scheduling algorithm is applied that can selectively drop combinations of video packets prior to transmission to adapt the source requirements to the channel capacity. The scheduling algorithm selects the less important video packets to drop using a recursive distortion prediction model. This model predicts accurately the resulting video distortion in case of isolated errors, burst of errors and errors separated by a lag. Two scheduling algorithms are proposed in this paper. The Baseline scheme is a simplified scheduler that can only decide upon which packet can be dropped prior to transmission based on the packet’s impact on the video distortion. This algorithm is compared against the Power aware packet scheduling that is an extension of the Baseline capable of estimating the power that will be consumed by each node in every available path depending on its traffic load, during the transmission. The proposed Power aware packet scheduling is able to identify the available paths connecting the video source to the receiver and schedule the packet transmission among the selected paths according to the perceived video QoS (Peak Signal to Noise Ratio—PSNR) and the energy efficiency of the participating wireless video sensor nodes, by dropping packets if necessary based on the distortion prediction model. The simulation results indicate that the proposed Power aware video packet scheduling can achieve energy efficiency in the wireless multimedia sensor network by minimizing the power dissipation across all nodes, while the perceived video quality is kept to very high levels even at extreme network conditions (many sensor nodes dropped due to power consumption and high background noise in the channel).  相似文献   

11.
The paper presents a high performance wireless access and switching system for interconnecting mobile users in a community of interest. Radio channel and time slot assignments are made on user demand, while the switch operations are controlled by a scheduling algorithm designed to maximize utilization of system resources and optimize performance. User requests and assignments are carried over a low-capacity control channel, while user information is transmitted over the traffic channels. The proposed system resolves both the multiple access and the switching problems and allows a direct connection between the mobile end users. The system also provides integration of voice and data traffic in both the access link and the switching equipment. The “movable boundary” approach is used to achieve dynamic sharing of the channel capacity between the voice calls and the data packets. Performance analysis based on a discrete time Markov model, carried out for the case of optimum scheduling yields call blocking probabilities and data packet delays. Performance results indicate that data packets may be routed via the exchange node with limited delays, even with heavy load of voice calls. Also the authors have proposed scheduling algorithms that may be used in implementing this system  相似文献   

12.
Distributed fair scheduling in a wireless LAN   总被引:1,自引:0,他引:1  
Fairness is an important issue when accessing a shared wireless channel. With fair scheduling, it is possible to allocate bandwidth in proportion to weights of the packet flows sharing the channel. This paper presents a fully distributed algorithm for fair scheduling in a wireless LAN. The algorithm can be implemented without using a centralized coordinator to arbitrate medium access. The proposed protocol is derived from the Distributed Coordination Function in the IEEE 802.11 standard. Simulation results show that the proposed algorithm is able to schedule transmissions such that the bandwidth allocated to different flows is proportional to their weights. An attractive feature of the proposed approach is that it can be implemented with simple modifications to the IEEE 802.11 standard.  相似文献   

13.
In a wireless network packet losses can be caused not only by network congestion but also by unreliable error-prone wireless links. Therefore, flow control schemes which use packet loss as a congestion measure cannot be directly applicable to a wireless network because there is no way to distinguish congestion losses from wireless losses. In this paper, we extend the so-called TCP-friendly flow control scheme, which was originally developed for the flow control of multimedia flows in a wired IP network environment, to a wireless environment. The main idea behind our scheme is that by using explicit congestion notification (ECN) marking in conjunction with random early detection (RED) queue management scheme intelligently, it is possible that not only the degree of network congestion is notified to multimedia sources explicitly in the form of ECN-marked packet probability but also wireless losses are hidden from multimedia sources. We calculate TCP-friendly rate based on ECN-marked packet probability instead of packet loss probability, thereby effectively eliminating the effect of wireless losses in flow control and thus preventing throughput degradation of multimedia flows travelling through wireless links. In addition, we refine the well-known TCP throughput model which establishes TCP-friendliness of multimedia flows in a way that the refined model provides more accurate throughput estimate of a TCP flow particularly when the number of TCP flows sharing a bottleneck link increases. Through extensive simulations, we show that the proposed scheme indeed improves the quality of the delivered video significantly while maintaining TCP-friendliness in a wireless environment for the case of wireless MPEG-4 video.  相似文献   

14.
The concept of a forwarding node, which receives packets from upstream nodes and then transmits these packets to downstream nodes, is a key element of any multihop network, wired or wireless. While high-speed IP router architectures have been extensively studied for wired networks, the concept of a "wireless IP router" has not been addressed so far. We examine the limitations of the IEEE 802.11 MAC protocol in supporting a low-latency and high-throughput IP datapath comprising multiple wireless LAN hops. We first propose a wireless IP forwarding architecture that uses MPLS with modifications to 802.11 MAC to significantly improve packet forwarding efficiency. We then study further enhancements to 802.11 MAC that improve system throughput by allowing a larger number of concurrent packet transmissions in multihop 802.11-based IP networks. With 802.11 poised to be the dominant technology for wireless LANs, we believe a combined approach to MAC, packet forwarding, and transport layer protocols is needed to make high-performance multihop 802.11 networks practically viable.  相似文献   

15.
By adding the redundant packets into source packet block, cross‐packet forward error correction (FEC) scheme performs error correction across packets and can recover both congestion packet loss and wireless bit errors accordingly. Because cross‐packet FEC typically trades the additional latency to combat burst losses in the wireless channel, this paper presents a FEC enhancement scheme using the small‐block interleaving technique to enhance cross‐packet FEC with the decreased delay and improved good‐put. Specifically, adopting short block size is effective in reducing FEC processing delay, whereas the corresponding effect of lower burst‐error correction capacity can be compensated by deliberately controlling the interleaving degree. The main features include (i) the proposed scheme that operates in the post‐processing manner to be compatible with the existing FEC control schemes and (ii) to maximize the data good‐put in lossy networks; an analytical FEC model is built on the interleaved Gilbert‐Elliott channel to determine the optimal FEC parameters. The simulation results show that the small‐block interleaved FEC scheme significantly improves the video streaming quality in lossy channels for delay‐sensitive video. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
Providing reliable data communications over wireless channels is a challenging task because time-varying wireless channel characteristics often lead to bit errors. These errors result in loss of IP packets and, consequently, TCP segments encapsulated into these packets. Since TCP cannot distinguish packet losses due to bit corruption from those due to network congestion, any packet loss caused by wireless channel impairments leads to unnecessary execution of the TCP congestion control algorithms and, hence, sub-optimal performance. Automatic Repeat reQuest (ARQ) and Forward Error Correction (FEC) try to improve communication reliability and reduce packet losses by detecting and recovering corrupted bits. Most analytical models that studied the effect of ARQ and FEC on TCP performance assumed that the ARQ scheme is perfectly persistent (i.e., completely reliable), thus a frame is always successfully transmitted irrespective of the number of transmission attempts it takes. In this paper, we develop an analytical cross-layer model for a TCP connection running over a wireless channel with a semi-reliable ARQ scheme, where the amount of transmission attempts is limited by some number. The model allows to evaluate the joint effect of stochastic properties of the wireless channel characteristics and various implementation-specific parameters on TCP performance, which makes it suitable for performance optimization studies. The input parameters include the bit error rate, the value of the normalized autocorrelation function of bit error observations at lag 1, the strength of the FEC code, the persistency of ARQ, the size of protocol data units at different layers, the raw data rate of the wireless channel, and the bottleneck link buffer size.  相似文献   

17.
Wireless Network-on-Chip (WiNoC) is regarded as one of the promising alternative approaches for sorting out the issues of latency and power consumption in the conventional Network-on-Chip (NoC). Despite the additional bandwidth of wireless channels on a chip, wireless routers (WRs) are prone to congestion in WiNoC due to the limited number of wireless channels on a chip and the shared use of these channels among all the cores. In this paper, an adaptive congestion-aware routing algorithm consistent with traffic load is proposed for solving the congestion problem of WRs. The proposed algorithm selects source-destination pairs with the longest wired hop distance for using wireless channels. The number of selected packets is determined based on the wireless channel bandwidth and the network traffic load. Simulation results show up to 65% latency improvement, 16% wired/wireless link utilization improvement and a saturation throughput increase of approximately 11%.  相似文献   

18.
The impact of multihop wireless channel on TCP performance   总被引:6,自引:0,他引:6  
This paper studies TCP performance in a stationary multihop wireless network using IEEE 802.11 for channel access control. We first show that, given a specific network topology and flow patterns, there exists an optimal window size W* at which TCP achieves the highest throughput via maximum spatial reuse of the shared wireless channel. However, TCP grows its window size much larger than W* leading to throughput reduction. We then explain the TCP throughput decrease using our observations and analysis of the packet loss in an overloaded multihop wireless network. We find out that the network overload is typically first signified by packet drops due to wireless link-layer contention, rather than buffer overflow-induced losses observed in the wired Internet. As the offered load increases, the probability of packet drops due to link contention also increases, and eventually saturates. Unfortunately the link-layer drop probability is insufficient to keep the TCP window size around W'*. We model and analyze the link contention behavior, based on which we propose link RED that fine-tunes the link-layer packet dropping probability to stabilize the TCP window size around W*. We further devise adaptive pacing to better coordinate channel access along the packet forwarding path. Our simulations demonstrate 5 to 30 percent improvement of TCP throughput using the proposed two techniques.  相似文献   

19.
Reliable transmission is a challenging task over wireless LANs since wireless links are known to be susceptible to errors. Although the current IEEE802.11 standard ARQ error control protocol performs relatively well over channels with very low bit error rates (BERs), this performance deteriorates rapidly as the BER increases. This paper investigates the problem of reliable transmission in a contention free wireless LAN and introduces a packet embedded error control (PEEC) protocol, which employs packet-embedded parity symbols instead of ARQ-based retransmission for error recovery. Specifically, depending on receiver feedback, PEEC adaptively estimates channel conditions and administers the transmission of (data and parity) symbols within a packet. This enables successful recovery of both new data and old unrecovered data from prior transmissions. In addition to theoretically analyzing PEEC, the performance of the proposed scheme is extensively analyzed over real channel traces collected on 802.11b WLANs. We compare PEEC performance with the performance of the IEEE802.il standard ARQ protocol as well as contemporary protocols such as enhanced ARQ and the hybrid ARQ/FEC. Our analysis and experimental simulations show that PEEC outperforms all three competing protocols over a wide range of actual 802.11b WLAN collected traces. Finally, the design and implementation of PEEC using an adaptive low-density-parity-check (A-LDPC) decoder is presented.  相似文献   

20.
As public deployment of wireless local area networks (WLANs) has increased and various applications with different service requirements have emerged, fairness and quality of service (QoS) are two imperative issues in allocating wireless channels. This study proposes a fair QoS agent (FQA) to simultaneously provide per-class QoS enhancement and per-station fair channel sharing in WLAN access networks. FQA implements two additional components above the 802.11 MAC: a dual service differentiator and a service level manager. The former is intended to improve QoS for different service classes by differentiating service with appropriate scheduling and queue management algorithms, while the latter is to assure fair channel sharing by estimating the fair share for each station and dynamically adjusting the service levels of packets. FQA assures (weighted) fairness among stations in terms of channel access time without decreasing channel utilization. Furthermore, it can provide quantitative service assurance in terms of queuing delay and packet loss rate. FQA neither resorts to any complex fair scheduling algorithm nor requires maintaining per-station queues. Since the FQA algorithm is an add-on scheme above the 802.11 MAC, it does not require any modification of the standard MAC protocol. Extensive ns-2 simulations confirm the effectiveness of the FQA algorithm with respect to the per class QoS enhancement and per-station fair channel sharing  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号