首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
局部遮阴下,光伏阵列的P-U特性曲线呈现多峰现象,此时传统的MPPT算法容易陷入局部寻优而失效。针对这一问题,采用一种基于改进粒子群寻优的MPPT算法。通过对局部遮阴下光伏阵列输出特性曲线进行分析,计算出可能存在的峰值点电压,作为粒子位置的初始值,同时引入状态因子δ对惯性权重、学习因子进行线性调整,以避免粒子陷入局部最优,减小追踪过程的震荡。最后将标准粒子群算法与改进粒子群算法进行Matlab仿真对比,验证了改进粒子群算法的优越性。  相似文献   

2.
为解决局部阴影下光伏阵列采用传统最大功率点跟踪(MPPT)易陷入多峰值的局部最优点问题,采用分布式构架的光伏阵列,提出了一种基于遗传粒子群(GA-PSO)的MPPT混合算法,GA-PSO算法结合了粒子群算法(PSO)的位置转移和遗传算法(GA)的全局搜索能力,使混合算法拥有比GA算法和PSO算法更好的追踪准确性和快速性。在MATLAB/Simulink平台上建立了基于GA-PSO的分布式最大功率跟踪控制(DMPPT)电路拓扑结构的光伏阵列仿真模型,仿真结果验证了所提算法的可行性和有效性,为MPPT技术改进提供一种参考方案。  相似文献   

3.
提出一种变异粒子群算法(MPSO),通过在粒子群算法中引入变异,可改善其跳出局部最优解的能力。变异粒子群算法采用有限的粒子数目即可实现阴影条件下光伏系统的最大功率点跟踪,而无需知道旁路二极管的数目,具有通用性。对变异粒子群算法进行的仿真和试验可证明该算法的有效性。  相似文献   

4.
光伏阵列局部处于阴影时,其功率输出会呈现多峰值特征,将造成传统的MPPT算法跟踪失效。文章针对标准粒子群算法(PSO)在实现多峰值MPPT控制时,存在容易进入局部最优、收敛速度较慢和跟踪精度较低等问题,提出了一种基于改进PSO算法的多峰值MPPT控制算法。该方法把非线性变化的变异策略引入到PSO算法中,在显著提高跟踪速度的前提下,扩大了粒子的搜索范围,从而增强了全局寻优能力。仿真与实验结果表明,与传统的PSO方法相比,文章所提出的方法在均匀光照、静态阴影和动态阴影下,均能快速精准地实现对全局最大功率点的跟踪和控制,在一定程度上提高了光伏阵列的发电效率。  相似文献   

5.
在光伏系统最大功率点跟踪过程中,针对太阳辐射强度改变时,粒子群算法易出现收敛速度慢、陷入局部最优等问题,提出了一种惯性权重对数递减粒子群(LOGPSO)算法,该算法将惯性权重以对数形式递减,并加入了对数调整因子,使运行初期的MPPT能够较快地确定极大功率值点所对应的电压,运行中期的惯性权重迅速减小,运行后期的MPPT能够精确地搜索到最大功率点所对应的电压。仿真结果表明,在不同的太阳辐射强度条件下,LOGPSO算法能够显著改善光伏系统MPPT中存在的收敛速度慢、收敛精度低等问题。  相似文献   

6.
该文自主研发一种光伏组件智能接线盒,此接线盒应用改进PSO(粒子群优化算法)算法实现具有最大功率点追踪(MPPT)控制功能的直流-直流变换(DC/DC)变换器。对光伏组件智能接线盒中的硬件设计以及算法控制分别进行详细介绍,并通过实验验证了硬件的合理性以及算法的高效性,通过仿真与实验表明智能组件接线盒在处理阴影遮挡问题时,可提高10%以上的输出功率。  相似文献   

7.
基于改进量子粒子群算法的光伏多峰MPPT研究   总被引:1,自引:0,他引:1  
针对光伏阵列在局部遮阴时呈现的功率多峰特性,提出一种改进DCWQPSO算法与INC算法相结合的光伏最大功率追踪(MPPT)控制算法。该算法采用改进DCWQPSO算法进行最大功率点的全局搜索,然后利用INC算法对最大功率点进行局部跟踪,可避免动态过程中功率的震荡。仿真结果表明:所提出的MPPT控制算法跟踪速度快、精度高、功率震荡小,可有效提升不确定环境下光伏发电系统的最大功率追踪效率和动态品质,并具有较好的鲁棒性。  相似文献   

8.
传统MPPT算法存在易陷入局部最优的问题,且目前采用的智能优化算法解决该类问题也有追踪精度不足、追踪速度慢等问题。为解决上述问题,该文提出一种基于金枪鱼算法(TSO)与改进黏菌觅食算法(MSMA)的混合优化算法。该方法通过早期金枪鱼算法的抛物线觅食策略来加快搜索速度,对黏菌觅食算法采用基于混沌映射的反向学习策略进行改进,达到扩大算法探索范围的目的,使之不易于陷入局部最优,并提高算法运算速度。将改进后的算法应用于光伏系统MPPT中,仿真实验结果表明:改进后算法相较于单独TSO与MSMA算法,在不同遮光条件下追踪速率有较大提升,精确度高于单独的TSO与MSMA算法,拥有更好的追踪速度与追踪精度。  相似文献   

9.
在深入研究光伏阵列在局部遮蔽条件下的特性曲线后,提出一种基于电压区间的功率最大值范围估计策略;并在粒子群算法基础上,赋予每个粒子领地属性后,设计一种领地式迭代策略,提出一种领地粒子群最大功率点追踪算法。该算法能在局部遮蔽条件下快速找到全局最大功率点。仿真和实验结果均证明,与原始粒子群算法相比,领地粒子群算法能缩短追踪时间50%以上。  相似文献   

10.
何頔  张彼德  龙杰  邓钧  张强 《水电能源科学》2014,32(12):191-194
针对粒子群算法易出现"惰性"粒子的问题,提出新型混合粒子群算法,即首先利用混沌理论初始化粒子群,使生成的初始解遍历整个搜索空间,再融入交叉、变异、混沌扰动操作帮助"惰性"粒子跳出局部最优,进而以有功网络损耗最小为目标函数,应用新型混合粒子群算法对IEEE33节点配电系统中分布式电源的位置和容量进行规划。结果表明,新型混合粒子群算法应用于含分布式电源的配电网规划中具有可行性。  相似文献   

11.
光伏系统的功率-电压(P-V)在局部阴影状况下表现出多峰特性,常规最大功率跟踪(MPPT)方法易陷入局部最优值.针对此问题提出一种扩大缩放因子和引入差分策略改进的樽海鞘群算法.在领导者位置更新过程中添加帕累托分布和混沌映射提高全局搜索能力;在局部搜索过程中引入差分策略改善局部搜索能力.将改进方法应用到多峰值光伏系统MP...  相似文献   

12.
This paper explains the development of a new algorithm for maximum power point tracking (MPPT) in large PV systems under partial shading conditions (PSC). The new algorithm combines the use of particle swarm optimization (PSO) for MPPT during the initial stages of tracking and then employs the traditional perturb and observe (PO) method at the final stages. The methodology has been first simulated in two different PV configurations under varying shading patterns and experimentally verified using a microcontroller based experimental system. The integration of swarm intelligence with PO algorithm is shown to yield faster convergence to the global maximum power point (GMPP) than when the two methods are individually used. The oscillations in the output power, voltage and current of the PV system with the proposed method are the least when compared to the ones obtained during PSO based MPPT.  相似文献   

13.
当阴影条件变化时,并联光伏组件的全局最大功率点(MPP)会随之改变.为了实现太阳能发电最大化,要求最大功率点跟踪(MPPT)方法始终能实时而准确地锁定住并联光伏组件的全局MPP.不同阴影条件下并联光伏组件会呈现不同的外特性特征,如多阶梯的电流电压特性以及多峰值的功率电压特性.基于此现象,该文提出一种基于并联光伏组件外特...  相似文献   

14.
为减小光伏阵列在存在局部阴影时光伏系统输出功率的损失,提高最大功率点追踪(MPPT)的速度和准确性,提出基于布谷鸟(CS)算法和扰动观察法(P&O)相结合的MPPT控制方法(ICS-P&O)。对CS算法中的种群进行分组,在随机游走阶段为2个种群设置不同的更新策略,在偏好游走阶段加入信息共享策略来辅助更新,从而加快算法的收敛,提升收敛精度,而后利用小步长P&O算法进一步提高后期的收敛精度。仿真结果表明,所提算法在不同的外界环境下追踪速度和追踪精度均得到有效提升。  相似文献   

15.
Maximum Power Point Tracking (MPPT) controller is required in a solar photovoltaic (PV) system to deliver the maximum power to load from PV module. This paper proposes a novel stepped MPPT method to realize a simple MPPT controller, which can track the real maximum power point (RMPP) even under partial shading conditions. The proposed algorithm is started by scanning the characteristic curve of the PV modules to detect the global maximum power point and then the algorithm will be switched to the conventional P&O algorithm to track the true maximum power point. The obtained simulation results, using Power electronic simulation software (PSIM), are compared with those found using the P&O method to confirm the performance of our proposed MPPT method even under non-uniform solar irradiation.  相似文献   

16.
周天沛  孙〓伟  杨俊利 《水电能源科学》2012,30(10):208-210,185
为提高光伏电池的利用率,需要进行光伏阵列的最大功率点跟踪(MPPT),针对传统粒子群优化算法在多目标优化中的不足,提出了基于最小粒子角度的多目标粒子群优化算法,利用目标空间中不同粒子之间的角度进行粒子全局极值更新,通过比较粒子的浓度值给出粒子群及粒子个体极值更新方法,并在Matlab/Simulink下进行了建模与仿真。仿真结果显示,该算法在外界环境变化时能快速准确地跟踪太阳能电池的最大功率点,并能保证系统的稳定性。  相似文献   

17.
针对在局部阴影情况下光伏阵列的功率-电压(P-U)特性曲线呈多峰特性,粒子群算法应用于局部阴影下的最大功率点跟踪(MPPT)跟踪,存在搜索速度慢、精度低的缺点。提出自适应惯性权重粒子群优化(PSO)算法的最大功率点跟踪算法,自动更新惯性权重w和学习因子C1C2,通过仿真实验,优化前的全局最大功率点(GMPP)跟踪时间是0.045 s,输出功率为468 W。优化后的自适应粒子群算法GMPP跟踪时间为0.020 s,输出功率稳定在为480 W,光伏阵列的输出功率跟踪误差小于30%。在所搭建辐照度突变模型仿真中,在4.022 s突变到300 W/m2时经过0.05 s又重新跟踪到了新的最大功率点稳定在0.075 MW。最后通过实验平台验证,优化后的自适应粒子群优化算法与传统的粒子群优化算法相比,追踪时间减少了55.5%,误差小于5%,验证了该算法可行性和实用性。  相似文献   

18.
Fuel cells output power depends on the operating conditions, including cell temperature, oxygen partial pressure, hydrogen partial pressure, and membrane water content. In each particular condition, there is only one unique operating point for a fuel cell system with the maximum output. Thus, a maximum power point tracking (MPPT) controller is needed to increase the efficiency of the fuel cell systems. In this paper an efficient method based on the particle swarm optimization (PSO) and PID controller (PSO-PID) is proposed for MPPT of the proton exchange membrane (PEM) fuel cells. The closed loop system includes the PEM fuel cell, boost converter, battery and PSO-PID controller. PSO-PID controller adjusts the operating point of the PEM fuel cell to the maximum power by tuning of the boost converter duty cycle. To demonstrate the performance of the proposed algorithm, simulation results are compared with perturb and observe (P&O) and sliding mode (SM) algorithms under different operating conditions. PSO algorithm with fast convergence, high accuracy and very low power fluctuations tracks the maximum power point of the fuel cell system.  相似文献   

19.
Maximum power point tracking (MPPT) techniques are used to maintain photovoltaic modules operating points at the local maximum power points under non-uniform irradiance conditions (NUIC). For global maximum power point tracking (GMPPT) within an appropriate period, a hybrid artificial fish swarm algorithm (HAFSA) is proposed in this paper, which was developed using particle swarm optimization (PSO) to reformulate AFSA and improve its principal parameters. Simulation results show that under NUIC, compared with PSO and AFSA, the proposed algorithm has better performance with respect to convergence speed and convergence accuracy. Under NUIC, the average convergence times for 1000 simulation experiments completed with PSO, AFSA, and HAFSA are 0.4830 s, 0.4003 s and 0.3152 s respectively, and the average tracking time of the HAFSA algorithm is reduced by 34.74% and 21.26% compared with PSO and AFSA, respectively. The convergence times of the velocity inertia m relative constant and linear decrement method decreased by 35.48% and 8.19%, the convergence time of the Visual relative constant mode decreased by 10.16%, and the convergence time of the Step relative constant mode decreased by 17.88%. The proposed GMPPT algorithm is simulated in MATLAB, and the algorithm tracks GMPP with excellent efficiency and fast speed.  相似文献   

20.
实际光伏系统在被部分遮挡的情况下,带有旁路二极管的串联光伏组件呈现出多峰值的输出特性。为得到全局最大功率点,需要对其进行多峰值最大功率点跟踪(MPPT)。在单峰值MPPT控制算法的基础上,提出新的多峰值MPPT控制方法,能够通过4步,实现对最大功率点的有效跟踪。该算法的关键在于确定输出特性的谷值,以便进行定界和多区域搜索。最后通过仿真实例验证该算法的有效性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号