首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
To investigate the interaction of dusty plasma with magnetized plasmas at divertor plasma simulator, radial profiles of plasma density(ne) and electron temperature were measured in terms of plasma discharge currents and magnetic flux intensity by using a fast scanning probes system with triple tips. Dusty plasma with dusts(a generation rate of 3 μg s~(-1) and a size of 1–10 μm)was produced via interactions between a high-power laser beam and a full tungsten target. As ne increases, the scale of the effects of dusty plasma injection on magnetized plasmas was decreased. Also, the duration of transient fluctuation was reduced. For numerical estimation of plasma density perturbation due to dusty plasma injection, the result was ~10% at a core region of the magnetized plasma with n_e of(2–5)×10~(11) cm~(-3) at steady state condition.  相似文献   

2.
Thomson scattering(TS),as a popular and reliable diagnostic technique,has successfully measured electron temperatures and electron number densities of plasmas for many years.However,conventional TS techniques using Nd:YAG lasers operate only at tens of hertz.Here,we present the development of a high-repetition-rate TS instrument based on a high-speed,pulse-burst laser system to greatly increase the temporal resolution of measurements.Successful instrument prototype testing was carried out by collecting TS light from laboratory helium and argon plasmas at 10 kHz.Calibration of the instrument detection sensitivity using nitrogen/oxygen rotational Raman scattering signal is also presented.Quantitative electron number densities and electron temperatures of the plasma were acquired at 10 kHz,for stable plasma discharges as,respectively,~0.9 eV and ~5.37×10~(21)m~(-3) for the argon plasma,and ~1eV and ~6.5×1021 m~(-3) for the helium plasma.  相似文献   

3.
We propose a new laser-plasma-based method to generate bright γ-rays carrying large orbital angular momentum by interacting a circularly polarized Laguerre–Gaussian laser pulse with a near-critical hydrogen plasma confined in an over-dense solid tube. In the first stage of the interaction, it is found via fully relativistic three-dimensional particle-in-cell simulations that high-energy helical electron beams with large orbital angular momentum are generated. In the second stage, this electron beam interacts with the laser pulse reflected from the plasma disc behind the solid tube, and helical γ beams are generated with the same topological structure as the electron beams. The results show that the electrons receive angular momentum from the drive laser, which can be further transferred to the γ photons during the interaction. The γ beam orbital angular momentum is strongly dependent on the laser topological charge l and laser intensity a0, which scales as ${L}_{\gamma }\propto {a}_{0}^{4}$. A short (duration of 5 fs) isolated helical γ beam with an angular momentum of −3.3 × 10−14 kg m2 s−1 is generated using the Laguerre–Gaussian laser pulse with l = 2. The peak brightness of the helical γ beam reaches 1.22 × 1024 photons s−1 mm−2 mrad−2 per 0.1% BW (at 10 MeV), and the laser-to-γ-ray angular momentum conversion rate is approximately 2.1%.  相似文献   

4.
Electron cyclotron current drive (ECCD) efficiency research is of great importance for the neoclassical tearing mode (NTM) stabilization. Improving ECCD efficiency is beneficial for the NTM stabilization and the ECCD power threshold reduction. ECCD efficiency has been investigated on the J-TEXT tokamak. The electron cyclotron wave (ECW) power scan was performed to obtain the current drive efficiency. The current drive efficiency is derived to be approximately η0 = (0.06–0.16) × 1019 A m−2 W−1 on the J-TEXT tokamak. The effect of the residual toroidal electric field has been included in the determination of the current drive efficiency, which will enhance the ECCD efficiency. At the plasma current of Ip = 100 kA and electron density of ne = 1.5 × 1019 m−3, the ratio of Spitzer conductivity between omhic (OH) and ECCD phases is considered and the experimental data have been corrected. The correction results show that the current drive efficiency η1 caused by the fast electron hot conductivity decreases by approximately 79%. It can be estimated that the driven current is approximately 24 kA at 300 kW ECW power.  相似文献   

5.
For collisional merging field-reversed configurations (FRCs), it is desired to have both FRCs tuned to be approximately the same, as well as to optimize each FRC to have high temperature and high translation speed so as to retain most of the equilibrium flux after traveling a distance to the middle plane for merging. The present study reports the experimental study of a single-translated FRC in the KMAX-FRC device with various diagnostics, including a triple probe, a bolometer, several magnetic probe arrays, and a novel 2D internal magnetic probe array. According to the measurements conducted in the present study, a maximum toroidal magnetic field equal to ∼1/3 of the external magnetic field inside the FRC separatrix radius is observed, and the typical parameters of a single-translated FRC near the device’s mid-plane are ne ∼ (2–4)×1019 m−3, Te ∼ 8 eV, Ti ∼ 5 eV, rs ∼ 0.2 m, ls ∼ 0.6 m and ϕp(RR) ∼ 0.2 mWb. The 2D magnetic topology measurement revealed, for the first time, the time evolution of the overall internal magnetic fields of a single-translated FRC, and an optimized operation regime is given in the paper.  相似文献   

6.
A millimeter wave solid state source—far infrared laser combined interferometer system (MFCI) consisting of a three-channel 890 GHz hydrogen cyanide (HCN) laser interferometer and a three-channel 340 GHz solid state source interferometer (SSI) is developed for real-time line-integrated electron density feedback and electron density profile of the EXL-50 spherical tokamak device. The interferometer system is a Mach–Zehnder type, with all probe-channels measured vertically, covering the plasma magnetic axis to the outermost closed magnetic plane. The HCN laser interferometer uses an HCN laser with a frequency of 890 GHz as a light source and modulates a 100 kHz beat signal by a rotating grating, giving a temporal resolution of 10 μs. The SSI uses two independent 340 GHz solid-state diode sources as the light source, the frequency of the two sources is adjustable, and the temporal resolution of SSI can reach 1 μs by setting the frequency difference of the two lasers at 1 MHz. The main optical path of the two interferometers is compactly installed on a set of double-layer optical platform directly below EXL-50. Dual optical path design using corner cube reflectors avoids the large support structures. Collinear the probe-beams of two wavelengths, then the phase error caused by vibration can be compensated. At present, the phase noise of the HCN Interferometer is 0.08 rad, corresponding to a line-integrated electron density of 0.88 × 1017 m−2, one channel of measuring result was obtained by the MFCI system, and the highest density measured is about 0.7 × 1019 m−2.  相似文献   

7.
SST-1 toroidal field (TF) magnet system is comprising of sixteen superconducting modified ‘D’ shaped TF coils. During single coil test campaigns spanning from June 10, 2010 till January 24, 2011; the electromagnetic, thermal hydraulic and mechanical performances of each TF magnet have been qualified at its respective nominal operating current of 10,000 A in either two-phase or supercritical helium cooling conditions. During the current charging experiments, few quenches have initiated either as a consequence of irrecoverable normal zones or being induced in some of the TF magnets. Quench evolution in the TF coils have been analyzed in detail in order to understand the thermal hydraulic and quench propagation characteristics of the SST-1 TF magnets. The same were also simulated using 1D code Gandalf. This paper elaborates the details of the analyses and the quench simulation results. A predictive quench propagation analysis of 16 assembled TF magnets system has also been reported in this paper.  相似文献   

8.
It is possible to detect the presence of small field errors in a tokamak with an electron beam. This was demonstrated earlier on T-15 and TEXTOR. This paper discusses the concept, past experience on these tokamaks, calculations for the Korea Superconducting Tokamak Advanced Research (KSTAR) device, an electron beam source, measurement devices for these measurements, and some results. It is shown that small toroidally averaged field errors can be detected by this method. A low voltage electron beam (e-beam) gun and fluorescent screen were mounted in a vertical port and inserted into the vacuum vessel at the end of the KSTAR 2nd campaign plasma experiments. A camera with a narrow field of view was mounted in midplane port in a tube tangent to the field lines at R ∼ 1.3 m and photographed the beam striking the screen. The poloidal field (PF) currents were held constant during the camera exposure period. Many shots with various PF coils energized were made and the deflections of the e-beam were measured. The measurements were made with a camera integration time of 300 ms because of the low light intensity. The results show that there are large field errors that diminish as the PF currents are raised. There appears to be no significant up-down asymmetry for static fields. Measurements with a 7 PF coil scenario with a calculated field null located at e-beam radial position show much larger fields than calculated. KSTAR was constructed with Incoloy 908 conduit using cable-in-conduit conductors (CICC) in 10 of the 14 PF coils and all 16 of the toroidal field (TF) coils. Incoloy 908 has a relative magnetic permeability, μ, of about 10. The field errors appear to be largely due to Incoloy 908.  相似文献   

9.
The high magnetic field helicon experiment system is a helicon wave plasma(HWP)source device in a high axial magnetic field(B_0)developed for plasma–wall interactions studies for fusion reactors.This HWP was realized at low pressure(5?×?10~(-3)?-?10 Pa)and a RF(radio frequency,13.56 MHz)power(maximum power of 2 k W)using an internal right helical antenna(5 cm in diameter by 18 cm long)with a maximum B_0of 6300 G.Ar HWP with electron density~10~(18)–10~(20)m~(-3)and electron temperature~4–7 e V was produced at high B_0 of 5100 G,with an RF power of 1500 W.Maximum Ar~+ion flux of 7.8?×?10~(23)m~(-2)s~(-1)with a bright blue core plasma was obtained at a high B_0 of 2700 G and an RF power of 1500 W without bias.Plasma energy and mass spectrometer studies indicate that Ar~+ion-beams of 40.1 eV are formed,which are supersonic(~3.1c_s).The effect of Ar HWP discharge cleaning on the wall conditioning are investigated by using the mass spectrometry.And the consequent plasma parameters will result in favorable wall conditioning with a removal rate of 1.1?×?10~(24)N_2/m~2 h.  相似文献   

10.
Recent experimental data for anomalous magnetic moments strongly indicates the existence of new physics beyond the Standard Model. Energetic μ+ bunches are relevant to μ+ rare decay, spin rotation, resonance and relaxation (μSR) technology, future muon colliders, and neutrino factories. In this paper, we propose prompt μ+ acceleration in a nonlinear toroidal wakefield driven by a shaped steep-rising-front Laguerre–Gaussian (LG) laser pulse. An analytical model is described, which shows that a μ+ beam can be focused by an electron cylinder at the centerline of a toroidal bubble and accelerated by the front part of the longitudinal wakefield. A shaped LG laser with a short rise time can push plasma electrons, generating a higher-density electron sheath at the front of the bubble, which can enhance the acceleration field. The acceleration field driven by the shaped steep-rising-front LG laser pulse is about four times greater than that driven by a normal LG laser pulse. Our simulation results show that a 300 MeV μ+ bunch can be accelerated to 2 GeV and its transverse size is focused from an initial value of w0 = 5 μm to w = 2 μm in the toroidal bubble driven by the shaped steep-rising-front LG laser pulse with a normalized amplitude of a = 22.  相似文献   

11.
The HT-7U tokamak is a magnetically-confined full superconducting fusion device, consisting of superconducting toroidal field (TF) coils and superconducting poloidal field (PF) coils. These coils are wound with cable-in-conductor (CICC) which is based on UNK NbTi wires made in Russian '. A single D-shaped toroidal field magnet coil will be tested for large and expensive magnets systems before assembling them in the toroidal configuration. This paper describes the layout of the instrumentation for a superconducting test facility based on the results of a finite element modeling of the single coil of toroidal magnetic field (TF) coils in HT-7U tokamak device. At the same time, the design of coil support structure in the test facility is particularly discussed in some detail.  相似文献   

12.
Refurbishment of steady state tokamak (SST-1) primarily focused at addressing the issues and bottle-necks involving various subsystems of SST-1 as observed during earlier commis- sioning attempts, have progressed significantly. Under the refurbishment spectrum, all joints in the superconducting magnet system have been re-fabricated as low DC leak tight joint resistances, all toroidal field (TF) magnets have been equipped with 5 K radiation shields on the inner side and successfully tested for their rated parameters in cold under nominal currents, all vessel sectors and modules have been baked and tested under representative conditions, supporting helium and ni- trogen cryogenic facilities have been made > 99% reliable in various envisaged operating scenarios of SST-1. The reassemblies of the critical subsystems of the SST-1 machine shell have progressed aggressively and are nearing completion. Auxiliaries such as the baking facility for the vacuum vessel and first wall components, current leads assembly distributions, synchronized timing sys- tem, reliable data acquisition and plasma control systems as well as essential diagnostics have also been readied towards the first plasma. A detailed engineering validation of the assembled SST-1 machine shell including field error measurements has been planned prior to first plasma attempts.  相似文献   

13.
为保证85Kr测厚源的密封质量,通过85Kr测厚源结构设计、焊接工艺参数优化,制备合格的85Kr测厚源。铜管与壳体的连接采用真空钎焊工艺,钎焊温度约900 ℃,时间约30 min;源窗与壳体的连接采用电子束焊工艺,焊接电流7 mA,焊接转速13 mm/s;源后盖与壳体的连接采用激光焊工艺,焊接功率180~185 W,焊接速度2 mm/s。测厚源检验结果表明,所制备的85Kr测厚源,氦质谱检漏结果小于1.0×10-9 Pa·m3·s-1,放射性气体检验不超过4 kBq/24 h,符合GB/T 15849—1995中“其他射气检验方法”要求。金相实验结果表明,采用优化参数试样的焊缝中未发现明显的裂纹、未焊透、未熔合等缺陷,最大焊接熔深约0.73 mm。  相似文献   

14.
In the experimental advanced superconducting tokamak,density pump-out phenomena were observed by using a multi-channel polarimeter-interferometer system under different heating schemes of ion cyclotron resonant heating,electron cyclotron resonance heating,and neutral beam injection.The density pump-out was also induced with application of resonant magnetic perturbation,accompanied with a degradation of particle confinement.For the comparison analysis in all heating schemes,the typical plasma parameters are plasma current 400 k A,toroidal field 2 T,and line average density 2?×?10~(19)m~(-3).The experimental results show that the degree of pump-out is concerned with electron density and heating power.Low density deuterium low confinement(L-mode) plasmas(3.5?×?10~(19)m~(-3)) show strong pump-out effects.The density pump-out correlated with a significant drop of particle confinement.  相似文献   

15.
KTX反场箍缩装置的主要参数介于RFX装置与MST装置之间。反场箍缩的外加纵场需跟随等离子体电流的演化而变化,同时由于RFP中的磁面对于外部特别是等离子体边界处的径向磁场较敏感,所以需外部线圈的磁场更加精细,这对于线圈的磁场分布、误差场以及波纹度等的设计提出了更高的要求。根据KTX物理目标参数要求,提出矩形和楔形截面纵场磁体线圈设计方案,借助有限元软件和程序分析了其电磁场空间分布和结构受力大小。结果表明,6.4°楔形截面方案相比矩形截面方案在控制误差场方面更具有可行性。  相似文献   

16.
Pulsed plasma thrusters(PPTs) are an attractive form of micro-thrusters due to advantages such as their compactness and lightweight design compared to other electric propulsion systems.Experimental investigations on their plasma properties are beneficial in clarifying the complex process of plasma evolution during the micro-second pulse discharge of a PPT. In this work, the multi-dimensional evolutions of the light intensity of the PPT plasma with wavelength, time, and position were identified. The plasma pressure was obtained using an iterative process with composition calculations. The results show that significant ion recombination occurred in the discharge channel since the line intensities of CII, CIII, CIV, and FII decreased and those of CI and FI increased as the plasma moved downstream. At the center of the discharge channel, the electron temperature and electron density were in the order of 10 000 K and 10~(17) cm~(-3),respectively. These had maximum values of 13 750 K and 2.3?×?10~(17) cm~(-3) and the maximum temperature occurred during the first half-cycle while the maximum number density was measured during the second half-cycle. The estimated plasma pressure was in the order of 10~5 Pa and exhibited a maximum value of 2.69?×?10~5 Pa.  相似文献   

17.
The Compact Toroidal Hybrid (CTH) is a low aspect ratio (R/aplasma ≥ 3.5, R0 = 0.75 m, avessel = 0.29 m, B ≤ 0.6 T) torsatron with a highly flexible vacuum magnetic field configuration designed for current-driven instability studies. Vacuum magnetic field mapping of the completed configuration is performed using a movable electron gun and phosphor-coated screen. These experiments compare the actual magnetic configuration with the design, verify the range of accessible magnetic configurations, and identify vacuum field errors. The main helical field is produced by a continuously-wound helical coil, and the vacuum rotational transform is varied with a set of toroidal field coils. Four independent poloidal field coil sets provide equilibrium control and shaping, and are also used for ohmic current drive.  相似文献   

18.
1988年兰州大学成功研制了3×1012 s-1的ZF-300强流中子发生器,主要用于核数据测量、材料辐照损伤等研究。为进一步开展活化法中子核数据测量、裂变物理等研究,兰州大学启动了基于倍压加速器的ZF-400强流中子发生器研制工程,该中子发生器的设计指标为D束流能量400 keV、D束流强度大于30 mA、D-D中子产额大于5×1010 s-1,D-T中子产额大于5×1012 s-1。在裂变物理研究方面,已成功发展了描述裂变核断点裂变势的势驱动模型(potential-driving model),并开展了中子诱发典型锕系核素裂变发射中子前裂变产物的质量分布计算研究;将potential-driving model植入Geant4程序,发展了用于裂变发射中子后裂变产物质量分布、动能分布、裂变中子能谱等模拟的蒙特卡罗方法,并开展了可靠性评估研究;研制了一套用于裂变产物实验测量的双屏栅电离室(TFGIC),并完成了初步实验测试。在中子应用技术方面,为满足小型化中子应用技术系统的研发需求,兰州大学成功研制了长度984 mm、直径234 mm的紧凑型中子发生器,通过在引出加速电极和靶之间加电阻的方式产生偏置电场,实现对靶上二次电子的抑制。在自注入靶条件和150 keV氘束流能量下,D-D中子产额可大于5×108 s-1,该中子发生器已具备产生D-T中子产额大于1010 s-1量级的潜力。完成了基于紧凑型D-T中子发生器的快中子准直屏蔽体的设计,并研发了基于微通道板的快中子成像探测器,初步D-T快中成像测试显示,图像空间分辨率约为500 μm。开展了基于紧凑型D-D中子发生器的核燃料棒235U富集度及均匀性检测系统研发,仿真研究表明,在D-D中子产额5×108 s-1条件下,对核燃料棒中10%范围内的235U富集度相对变化的检测置信度可达到99%。  相似文献   

19.
A new CO2 laser dispersion interferometer has been developed in the HL-2M tokamak to measure the electron density. In order to meet the needs of high-precision measurement, a data acquisition system with real-time signal conditioning (RSC) method is proposed. It can eliminate part of the impacts of environmental factors, such as mechanical vibration, light path changes, and plasma refraction effect during experiments. In harsh environments, the system can measure the line-integrated density with a high precision of 2 × 1018 m−2 with the RSC method. The system has been tested in a recent HL-2A experimental campaign, and the results show that the RSC method plays an important role in the plasma electron density measurement.  相似文献   

20.
Normal conducting steady-state toroidal magnet systems are investigated, emphasis being placed on applications to large ignited next generation tokamaks. The study is based on water-cooled tape wound D coils. The data for the TF magnet systems are calculated in a consistent manner with a computer program including the plasma, shield, ohmic heating coil system, and geometric requirements for blanket modules, beam ducts, etc. An optimization procedure is used to find those TF coil systems which minimize cost-relevant quantities. The main results are that normal conducting TF coil systems of ignited next-generation tokamaks (following JET, TFTR, etc.) can be operated in a stationary mode and fed from the grid. Cost for electricity is a relatively small portion of the investment cost even in the case of long integral burn times (>107 s).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号