首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
A parameter‐dependent Riccati equation approach is proposed to design and analyze the stability properties of an output feedback adaptive control law design. The adaptive controller is intended to augment an existing fixed‐gain observer‐based output feedback control law. Although the formulation is in the setting of model reference adaptive control, the realization of the adaptive controller does not require implementing the reference model. In this regard, the increased complexity of implementing the adaptive controller, above that of a fixed‐gain control law, is less than that of other methods. The error signals are shown to be uniformly ultimately bounded, and an estimate for the ultimate bound is provided. The issue of sensor noise is addressed by introducing an error filter. The control design process and the theoretical results are illustrated using a model for wing rock dynamics.  相似文献   

2.
A complete procedure for generating and analysing robust model reference adaptive control schemes for multivariable plants is developed. The procedure consists of two parts: the first part involves the characterization of the integral structure of the modelled part of the plant, and the associated parametrization of the controller structure; and the second part involves the development of a general robust adaptive law for adjusting the controller parameters so that the closed-loop plant is globally stable despite the presence of unmodelled dynamics and bounded disturbances. The use of dominantly rich signals for improving convergence and the bounds for the tracking and parameter error is also analysed.  相似文献   

3.
针对一类具有死区非线性输入的SISO非线性系统,基于滑模控制原理,提出了一种稳定自适应模糊控制器设计方案.该方案通过使用积分型Lyapunov函数避免了反馈线性化方法中可能出现的控制器奇异性问题,运用两阶段法构造两个Lyapunov函数,确定出用于建模的有界闭区域,再证明跟踪误差收敛到零.通过理论分析,证明了闭环控制系统全局一致终结有界;仿真结果表明了该方法的有效性.  相似文献   

4.
This paper presents a solution to the problem of digitally implementing backstepping adaptive control for linear systems. The continuous‐time system to be controlled is given a discrete‐time representation in the δ‐operator. A discrete adaptive backstepping controller is then designed for such a discrete‐time model. The effect of the modelling error, generated by the sampling process, is accounted for in the parameter update law by a σ‐modification. It is shown that all the signals (discrete and continuous) of the closed loop are uniformly bounded, with a region of attraction which is a K function of the sampling rate. An upper bound on the asymptotic tracking error is then given, and shown to be proportional to the sampling period. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

5.
This paper considers the problem of adaptive neural tracking control for a class of nonlinear stochastic pure‐feedback systems with unknown dead zone. Based on the radial basis function neural networks' online approximation capability, a novel adaptive neural controller is presented via backstepping technique. It is shown that the proposed controller guarantees that all the signals of the closed‐loop system are semi‐globally, uniformly bounded in probability, and the tracking error converges to an arbitrarily small neighborhood around the origin in the sense of mean quartic value. Simulation results further illustrate the effectiveness of the suggested control scheme. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

6.
The problem of robust stabilization for uncertain dynamic time‐delay systems is considered. Firstly a class of time‐delay systems with uncertainties bounded by high‐order polynomials and unknown coefficients are considered. The corresponding controller is designed by employing adaptive method. It is shown that the controller designed can render the closed‐loop system uniformly ultimately bounded stable based on Lyapunov–Krasovskii method and Lyapunov stability theory. Then the proposed adaptive idea is applied to stabilizing a class of large‐scale time‐delay systems with strong interconnections. A decentralized feedback adaptive controller is designed which guarantees the closed‐loop large‐scale systems uniformly ultimately bounded stable. Finally, numerical examples are given to show the potential of the proposed techniques. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

7.
针对一类结构和参数及控制方向均未知的非仿射纯反馈非线性不确定系统,提出了一种保预设性能鲁棒自适应控制方案。首先引入性能函数和误差转换函数,通过误差转换将原始的输出误差存在性能约束的受限系统转换为等价的非受限系统;其次,基于中值定理将非仿射型系统转化为具有线性结构形式的时变系统,并同时利用自适应投影算法对有界时变参数进行辨识,参数辨识误差和外界干扰采用非线性阻技术项进行补偿;随后综合运用反演技术和Nussbaum函数设计控制器并进行稳定性分析。所设计的控制器不仅能够保证闭环系统所有信号有界且输出误差满足预设的瞬态及稳态性能要求;最后,仿真结果验证了所设计控制方案的可行性与有效性。  相似文献   

8.
In this paper, a novel direct adaptive neural control approach is presented for a class of single‐input and single‐output strict‐feedback nonlinear systems with nonlinear uncertainties, unmodeled dynamics, and dynamic disturbances. Radial basis function neural networks are used to approximate the unknown and desired control signals, and a direct adaptive neural controller is constructed by combining the backstepping technique and the property of hyperbolic tangent function. It is shown that the proposed control scheme can guarantee that all signals in the closed‐loop system are semi‐globally uniformly ultimately bounded in mean square. The main advantage of this paper is that a novel adaptive neural control scheme with only one adaptive law is developed for uncertain strict‐feedback nonlinear systems with unmodeled dynamics. Simulation results are provided to illustrate the effectiveness of the proposed scheme. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

9.
Stochastic adaptive dynamic surface control is presented for a class of uncertain multiple‐input–multiple‐output (MIMO) nonlinear systems with unmodeled dynamics and full state constraints in this paper. The controller is constructed by combining the dynamic surface control with radial basis function neural networks for the MIMO stochastic nonlinear systems. The nonlinear mapping is applied to guarantee the state constraints being not violated. The unmodeled dynamics is disposed through introducing an available dynamic signal. It is proved that all signals in the closed‐loop system are bounded in probability and the error signals are semiglobally uniformly ultimately bounded in mean square or the sense of four‐moment and the state constraints are confirmed in probability. Simulation results are offered to further illustrate the effectiveness of the control scheme.  相似文献   

10.
一类MIMO非线性系统的直接鲁棒自适应模糊控制   总被引:2,自引:0,他引:2  
针对一类多输入多输出非线性系统,基于后推设计方法,提出了一种新的直接自适应控制方案。该方案中引入连续鲁棒项对系统的摄动部分直接进行抑制,并在自适应律中利用了Leakage项以防止参数漂移。采用修改的积分型Lyapunov函数,取消了每个子系统高频控制增益一阶导数上界已知的假设。通过理论分析,证明了闭环系统是半全局一致终结有界的,跟踪误差收敛到一个小的残差集内。仿真结果表明了该方法的有效性。  相似文献   

11.
A filtered adaptive constrained sampled-data controller for uncertain multivariable nonlinear systems in the presence of various constraints is synthesized in this paper. A piecewise constant adaptive law drives that estimation error dynamics to zero at each sampling time instant yields adaptive parameters. The filtered control scheme consists of two components. Based on an estimation/cancellation strategy, a disturbance rejection control law is designed to compensate the nonlinear uncertainties within the bandwidth of low-pass filters, whereas a constraint violation avoidance control law is designed to solve an online constrained optimization problem. Although a reduced sampling time helps to minimize the estimation error caused by the neglect of unknowns, the resulting aggressive signals put more restrictions on the control law. Greater sacrifice of tracking performance is required to satisfy the constraints. The constraints violation avoidance control law is in favor of a larger sampling time. Sufficient conditions are given to guarantee the stability of the closed-loop system with the sampled-data controller, where the input/output signals are held constant over the sampling period. Numerical examples are provided to validate the theoretical results, comparisons between the constrained sampled-data controller and unconstrained adaptive controller with the implementation of different sampling times are carried out.  相似文献   

12.
A modular approach of the estimation-based design in adaptive linear control systems has been extended to the adaptive robust control of strict-feedback stochastic nonlinear systems with additive standard Wiener noises and constant unknown parameters. By using It?’s differentiation rule, nonlinear damping and adaptive Backstepping procedure, the input-to-state stable controller of global stabilization in probability is developed, which guarantees that system states are bounded and the system has a robust stabilization. According to Swapping technique, we develop two filters and convert dynamic parametric models into static ones to which the gradient update law is designed. Transient performance of the system is estimated by the norm of error. Results of simulation show the effectiveness of the control algorithms. The modular design, which has a concise hierarchy, is more flexible and versatile than a Lyapunov-based algorithm. __________ Translated from Journal of University of Science and Technology of China, 2004, 34(4): 495–503 (in Chinese)  相似文献   

13.
This paper investigates an adaptive neural tracking control for a class of nonstrict‐feedback stochastic nonlinear time‐delay systems with input saturation and output constraint. First, the Gaussian error function is used to represent a continuous differentiable asymmetric saturation model. Second, the appropriate Lyapunov‐Krasovskii functional and the property of hyperbolic tangent functions are used to compensate the time‐delay effects, the neural network is used to approximate the unknown nonlinearities, and a barrier Lyapunov function is designed to ensure that the output parameters are restricted. At last, based on Lyapunov stability theory, a robust adaptive neural control method is proposed, and the designed controller decreases the number of learning parameters and thus reduces the computational burden. It is shown that the designed neural controller can ensure that all the signals in the closed‐loop system are 4‐Moment (or 2 Moment) semi‐globally uniformly ultimately bounded and the tracking error converges to a small neighborhood of the origin. Two examples are given to further verify the effectiveness of the proposed approach.  相似文献   

14.
This article is concerned about an adaptive dynamic surface control (DSC) of output constrained stochastic nonlinear systems with unknown control directions and unmodeled dynamics. Nonlinear mapping-based backstepping control design is presented for stochastic nonlinear systems with output constraint. The explosion of complexity exists in tradition backstepping method is avoided by using the DSC technique. The radial basis function neural networks are employed to deal with unknown nonlinear functions. Nussbaum gain technique is employed to handle the unknown control directions. And a dynamic signal is employed to dominate the unmodeled dynamics. The adaptive controller is designed can ensure that the tracking error converges on a small region of the origin. And all signals of the closed-loop systems are semiglobal uniformly ultimately bounded. Finally, the results of the simulation cases are provided to show the effectivity of the designed controller scheme.  相似文献   

15.
The transient stability problem of a single‐machine infinite‐bus system with static var compensator is solved in this paper, where the static var compensator controller is designed by an improved backstepping method combining error compensation, adaptive backstepping control, and sliding mode variable structure control. Crucially, the error compensation term, which chooses in the step of virtual control by the adaptive backstepping method, is introduced to ensure that the system states are bounded, maintaining the nonlinearity of the power systems while also improving the speed of parameter identification. Meanwhile, the Lyapunov function is constituted step by step to achieve stability of the subsystem. In addition, a parameter updating law and a nonlinear control law are explicitly given to asymptotically stabilize the closed‐loop system. Finally, a simulation is used to illustrate the effectiveness and the practicality of the proposed control approach.  相似文献   

16.
针对具有不可测状态、未知参数和非线性的轧机液压伺服位置系统,提出一种基于高增益观测器和参数估计器的自适应输出反馈控制算法.所构造的高增益观测器不依赖于系统输入和参数估计值,它只用于估计系统状态,所设计的动态反馈控制器包括:用于保证系统稳定性的主反馈部分和抵消外部扰动和一些不确定性的补偿部分.理论分析表明,所提出的控制算法能够保证闭环系统的所有信号有界,且系统状态及其估计误差的最终收敛边界依赖于观测器的高增益值.以某650 mm可逆冷带轧机液压伺服位置系统为例进行仿真,仿真结果验证了所提出算法的有效性.  相似文献   

17.
基于动态面控制的间接自适应神经网络块控制   总被引:1,自引:0,他引:1  
针对一类可转化为"标准块控制形"的多输入多输出的非线性系统,基于动态面控制技术,提出一种间接自适应神经网络控制器的设计方案.该方法通过引入1阶滤波器,消除了后推设计中由于反复对虚拟控制的求导而导致的复杂性问题,同时完全避免了反馈线性化方法中可能出现的控制器奇异性问题,且无需控制增益矩阵正定、可逆的条件.利用李亚普诺夫方法,证明了闭环系统是半全局一致终结有界,通过适当选取设计常数,跟踪误差可收敛到原点的一个小邻域内.仿真结果表明所提控制方法的有效性.  相似文献   

18.
This article proposes an adaptive prescribed performance tracking control methodology for a class of strict-feedback Multiple Inputs and Multiple Outputs nonlinear systems. A combination of backstepping technique and the generalized fuzzy hyperbolic model was used in recursive design of adaptive controller. A novel performance constraint function guarantees the tracking control performance. Lyapunov stability analysis proves that the designed controller can ensure the predefined transient and all signals within the closed-loop systems are semiglobally uniformly ultimately bounded. In the end, simulation results illustrate the validity of the proposed approach.  相似文献   

19.
In this paper, an adaptive event-triggered neural networks (NNs) tracking control problem is investigated for cyber-physical Systems (CPSs) with incomplete measurements. The state variables can get unavailable or distorted in incomplete measurements because of data transmission problems, which can degrade the performance of the system. To solve these problems, the radial basis function neural networks (RBF NNs) control is used to approximate the unknown nonlinear function in CPSs, and the Butterworth Low-pass Filter (LPF) is used to construct the NNs observer, which can estimate the immeasurable states. By using the Lyapunov function, the tracking error of the controller has limited to a small boundary. Based on backstepping control theory and event-triggered theory, the control signal of the fixed threshold strategy is obtained and two adaptive controllers for CPSs are established, it can ensure that all the closed-loop signals are uniformly ultimately bounded (UUB) in mean square and avoid the Zeno-behavior. The simulation results confirm the feasibility and effectiveness of the controller.  相似文献   

20.
This paper investigates the command filter-based adaptive neural network tracking control problem for uncertain nonsmooth nonlinear systems. First, an integral barrier Lyapunov function is introduced to deal with the symmetric output constraint and make the output comply with prescribed restrictions. Second, by the Filippov's differential inclusion theory and approximation theorem, the considered nonsmooth nonlinear system is converted to an equivalent smooth nonlinear system. Third, the Levant's differentiator is used to deal with the “explosion of complexity” problem. An error compensation mechanism is established to attenuate the effect of the filtering error on control performance. Then, an adaptive neural network controller is set up by resorting to the backstepping technique. It is strictly mathematically proved that the tracking error can converge to an arbitrarily small neighborhood of the origin and all the signals in the closed-loop system are semi-globally uniformly ultimately bounded. Finally, a numerical example and an application example of the robotic manipulator system are provided to demonstrate the availability of the proposed control strategy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号