首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
The sulfidation state in a series of Co-promoted Mo/Al2O3 catalysts was investigated using a 35S pulse tracer method. 35S-labeled H2S ([35S]H2S) pulses were introduced into catalysts in a nitrogen stream until the radioactivity in the recovered pulse approached the radioactivity of the introduced pulse. From the amount of introduced [35S]H2S, the amount of sulfur accumulated on the catalyst was estimated. The result indicated that the amounts of sulfur accumulated on the catalysts increased with increasing temperature for all catalysts. Only molybdenum was sulfided in both Co–Mo/Al2O3 and Mo/Al2O3 catalysts below 300°C, but the sulfided states of the catalysts at 400°C were very close to the stoichiometric states where Co and Mo are present as Co9S8 and MoS2. Further, hydrodesulfurization (HDS) reactions of radioactive 35S labeled dibenzothiophene were carried out over the series of Co-promoted Mo/Al2O3 catalysts. The amount of labile sulfur and the release rate constant of H2S were determined. The promotion effect of cobalt on activity of the molybdenum catalyst was attributed to the formation of more active sites. Moreover, the increase in the catalytic activity with Co/Mo ratio among the promoted catalysts was due to increase in the number of the sites with the same activity.  相似文献   

2.
Hydrodeoxygenation of guaiacol on noble metal catalysts   总被引:4,自引:0,他引:4  
Hydrodeoxygenation (HDO) performed at high temperatures and pressures is one alternative for upgrading of pyrolysis oils from biomass. Studies on zirconia-supported mono- and bimetallic noble metal (Rh, Pd, Pt) catalysts showed these catalysts to be active and selective in the hydrogenation of guaiacol (GUA) at 100 °C and in the HDO of GUA at 300 °C. GUA was used as model compound for wood-based pyrolysis oil. At the temperatures tested, the performance of the noble metal catalysts, especially the Rh-containing catalysts was similar or better than that of the conventional sulfided CoMo/Al2O3 catalyst. The carbon deposition on the noble metal catalysts was lower than that on the sulfided CoMo/Al2O3 catalyst. The performance of the Rh-containing catalysts in the reactions of GUA at the tested conditions demonstrates their potential in the upgrading of wood-based pyrolysis oils.  相似文献   

3.
Low loading sulfided rhodium catalysts supported on carbon nanotubes (CNTs) were prepared from RhCl3 by deposition–precipitation using hydrogen peroxide, followed by an exposure to hydrogen sulfide and an additional thermal treatment in the range from 400 °C to 900 °C. Hydrogen sulfide was generated online from hydrogen and sulfur vapor over molybdenum disulfide as catalyst. By elemental analysis, the Rh loading of the prepared catalysts was found to be 1.4–1.8 wt%. Morphology and composition of the resulting catalysts were characterized by X-ray diffraction (XRD), scanning and transmission electron microscopy (SEM and TEM), and X-ray photoelectron spectroscopy (XPS). Nanoparticles were found to be highly dispersed on the CNTs with an average diameter as small as 1.0 nm determined by TEM. Sintering occurred during heat treatments at 650 °C and 900 °C in helium, as evidenced by XRD, TEM, and XPS. The treatment with hydrogen sulfide significantly enhanced the activity of the supported rhodium catalysts for the oxygen reduction reaction (ORR) in hydrochloric acid, as determined by rotating disc electrode measurements. The sulfided catalyst annealed at 650 °C with a particle size of about 2.5 ± 1.0 nm showed the best performance for the ORR, which is discussed based on the presence of a more stable rhodium sulfide layer on the metallic rhodium particles.  相似文献   

4.
The present research deals with catalyst development for the utilization of CO2 in dry reforming of methane with the aim of reaching highest yield of the main product synthesis gas (CO, H2) at lowest possible temperatures. Therefore, Ni-Pd bimetallic supported catalysts were prepared by simple impregnation method using various carriers. The catalytic performance of the catalysts was investigated at 500, 600 and 700 °C under atmospheric pressure and a CH4 to CO2 feed ratio of 1. Fresh, spent and regenerated catalysts were characterized by N2 adsorption for BET surface area determination, XRD, ICP, XPS and TEM. The catalytic activity of the studied Ni-Pd catalysts depends strongly on the support used and decreases in the following ranking: ZrO2-La2O3, La2O3 > ZrO2 > SiO2 > Al2O3 > TiO2. The bimetallic catalysts were more active than catalysts containing Ni or Pd alone. A Ni to Pd ratio = 4 at a metal loading of 7.5 wt% revealed the best results. Higher loading lead to increased formation of coke; partly in shape of carbon nanotubes (CNT) as identified by TEM. Furthermore, the effect of different calcination temperatures was studied; 600 °C was found to be most favorable. No effect on the catalytic activity was observed if a fresh catalyst was pre-reduced in H2 prior to use or spent samples were regenerated by air treatment. Ni and Pd metal species are the active components under reaction conditions. Best conversions of CO2 of 78% and CH4 of 73% were obtained using a 7.5 wt% NiPd (80:20) ZrO2-La2O3 supported catalyst at a reaction temperature of 700 °C. CO and H2 yields of 57% and 59%, respectively, were obtained.  相似文献   

5.
La, V, Zn, Cu, Fe, Li and Ag promoted Rh/SiO2 catalysts were investigated for the synthesis of ethanol during CO hydrogenation at 230 °C and 1.8 atm. As is well known, the activity and selectivity depend heavily on the choice of promoter. Diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) was used to probe the effects of La, V, Zn and Cu on CO adsorption and hydrogenation. From the IR study, it was found that the behavior of CO adsorbed on the differently promoted catalysts was very different. While La enhanced total CO adsorption, the addition of V, Zn and Cu suppressed CO adsorption to different extents. The doubly promoted Rh-La/V/SiO2 showed only moderate CO adsorption. Results from DRIFTS suggest that the higher catalytic activity (compared to the non-promoted catalyst) observed for the La singly promoted Rh/SiO2 catalyst may primarily be caused by an increase in the concentration of the adsorbed CO species in the presence of H2, possibly due to the formation of new active sites at the LaOx-Rh interface. The higher catalytic activity of the V singly promoted Rh/SiO2 catalyst could be ascribed to an increased desorption rate/reactivity of the adsorbed CO species. The La and V doubly promoted catalyst showed both new adsorbed CO species and increased desorption rate/reactivity of the adsorbed species during CO hydrogenation due to a synergistic promoting effect of La and V. The addition of Zn or Cu promoters significantly reduced the desorption rate/reactivity of the adsorbed CO species on Rh/SiO2, leading apparently to the much reduced activities for CO hydrogenation observed.  相似文献   

6.
The effects of regeneration-phase CO and/or H2, and their amounts as a function of temperature on the trapping and reduction of NOX over a model and a commercial NOX storage/reduction catalyst have been evaluated. Overall, for both catalysts, their NOX removal performance improved with each incremental increase in H2 concentration. For the commercial sample, using CO at 200 °C, beyond a small amount added, was found to decrease performance. The addition of H2 to the CO-containing mixtures resulted in improved performance at 200 °C, but the presence of the CO still resulted in decreased performance in comparison to activity when just H2 was used. With the model sample, the presence of CO resulted in very poor performance at 200 °C, even with H2. The data suggest that CO poisons Pt sites, including Pt-catalyzed nitrate decomposition. At 300 °C, H2, CO, and mixtures of the two were comparable for trapping and reduction of NOX, although with the model sample H2 did prove consistently better. With the commercial sample, H2 and CO were again comparable at 500 °C, but mixtures of the two led to slightly improved performance, while yet again H2 and H2-containing mixtures proved better than CO when testing the model sample. NH3 formation was observed under most test conditions used. At 200 °C, NH3 formation increased with each increase in H2, while at 500 °C, the amount of NH3 formed when using the mixtures was higher than that when using either H2 or CO. This coincides with the improved performance observed with the mixtures when testing the commercial.  相似文献   

7.
Hydrodeoxygenation (HDO) of bio-crude was investigated using phenol as a model compound in supercritical hexane at temperatures of 300–450 °C and cold pressure of hydrogen 5.0 MPa with MgO-supported sulfided CoMo with and without phosphorus as a catalyst promoter. The oily products after hydro-treatment were characterized by GC/MS and FTIR. Both MgO-supported catalysts proved to be effective for hydrodeoxygenation of phenol leading to significantly increased yields of reduced hydrocarbon products, such as benzene and cyclohexyl-aromatics, at temperatures higher than 350 °C, while CoMoP/MgO showed superior activity in HDO of phenol. With the presence of CoMoP/MgO for 60 min and at 450 °C, the treatment of phenol yielded a product containing approximately 65 wt.% benzene and >10 wt.% cyclohexyl-compounds. The fresh and spent catalysts were thoroughly characterized by ICP-AES, N2 isothermal adsorption, XRD, XPS and TGA, and the effects of the phosphorus as the catalyst promoter and MgO as a basic support were discussed.  相似文献   

8.
The microstructure of palladium particles deposited on a porous silica support was examined y high resolution microscopy following various sulfidation treatments. For catalysts sulfided by the reaction itself (hydrodesulfurization of thiophene), the micrographs show large particles where an amorphous sulfide layer surrounds the Pd core; in the case of small particles, the presence of PdS2 was identified. For catalysts sulfided under 20% H2S/H2 at 623 K, the particles show lattice planes compatible with PdS2 and PdS. By increasing the sulfidation temperature to 723 K, faceted PdS particles are mostly formed. Some structural defects related to the sulfidation treatment are also shown.  相似文献   

9.
The organometallics chemical vapour deposition (OM-CVD) technique, using Rh(acac)(CO)2 as a precursor, was employed for the preparation of heterogeneous Rh catalysts supported on low surface area refractory oxides (α-Al2O3, ZrO2, MgO and La2O3). Prepared systems were tested in the methane catalytic partial oxidation (CH4-CPO) reaction in a fixed bed reactor and compared to a reference catalyst prepared from impregnation of Rh4(CO)12.Catalysts supported on Al2O3, ZrO2 and MgO show better or comparable performances with respect to the reference system.Complete decomposition of Rh precursor during formation of the metal phase under reductive conditions was investigated by TPRD and confirmed by infrared and mass spectrometry data.Supported Rh phase was characterized by CO and H2 chemisorption, CO-DRIFT spectroscopy and HRTEM microscopy in fresh and aged selected samples. Rh(I) isolated sites and Rh(0) metal particles were found on fresh catalysts; after ageing an extensive reconstruction occurs mainly consisting in a sintering of Rh isolate sites to metal particles but without large increase in mean particles size.Catalytic performances and Rh species balance were found to be dependent on the support material.  相似文献   

10.
Pt–Fe/mordenite (4 wt% Pt–0.5 wt% Fe) powder catalysts were wash-coated onto ceramic straight-channel monoliths by using silica- and/or alumina-sol as a binder, and were evaluated for the preferential oxidation of carbon monoxide (PROX) in a hydrogen-rich gas. In a synthetic reformate gas (1% CO, 1% O2, 5% H2O, 20% CO2, and balance H2), the CO concentration was reduced to less than 20 ppm at temperatures ranging from 100 to 130 °C. After a certain period of the PROX reaction, condensation of H2O in the pores of the mordenite-support occurred over the monolithic catalyst, which was wash-coated with alumina-sol, in the lower temperature range (100–120 °C), resulting in a rapid increase in CO concentration. The monolithic catalyst wash-coated with silica-sol, however, showed an excellent tolerance against H2O condensation and offered a stable catalytic performance, maintaining a CO concentration of ca. 20 ppm for 200 h. The H2O-tolerant characteristic was attributed to the relatively small adsorption amount of H2O over the silica-modified monolithic catalyst.  相似文献   

11.
Co/CeO2-ZrO2 catalysts for the ethanol steam reforming were prepared by wet incipient impregnation and coprecipitation methods. These catalysts were characterized by nitrogen adsorption, TEM-EDX, XRD, H2-TPR, and CO chemisorption techniques. It was found that the catalyst reducibility was influenced by the preparation methods; catalysts with different reduction behaviors in the pre-reduction showed different catalytic activities toward hydrogen production. The H2-TPR studies suggested the presence of metal–support interactions in Co/CeO2-ZrO2 catalysts during their hydrogen pre-reduction, a necessary treatment process for catalysts activation. These interactions were influenced by the preparation methods, and the impregnation method is a favorable method to induce a proper metal–support effect that allows only partial reduction of the cobalt species and leads to a superior catalytic activity for the hydrogen production through ethanol steam reforming. At 450 °C, the impregnated catalyst gives a hydrogen production rate of 147.3 mmol/g-s at a WHSV of 6.3 h−1 (ethanol) and a steam-to-carbon ratio of 6.5.  相似文献   

12.
The performance of different Ce-modified PdO/ZrO2 catalysts for methane oxidation in lean mixtures (5000 ppm of CH4) in presence of external water has been studied in this work. Deactivation experiments carried out in presence of 20,000 ppm of external water showed that water reversibly inhibits the reaction. However, it was observed that these catalysts can increase their activity in presence of water at low temperature (350 °C).In order to explain this behaviour, different samples of this catalyst were treated with wet air (20,000 ppm of H2O for 30 h). After this pre-treatment, their activity and stability for methane combustion were studied by recording light-off curves for the fresh catalysts and the catalyst after 50 h on stream for the oxidation of methane at 500 °C. As general trend, the hydro-ageing at the lowest temperature (300 °C) leaded to a very active catalyst (similar activity than the parent one), but it was more markedly deactivated. Hydro-ageing of the catalyst at higher temperatures enhanced its thermal stability.  相似文献   

13.
It has been suggested that the behavior of Group VIII metal catalysts supported on transition metal oxides can be significantly affected by pretreatment conditions due to strong metal–oxide interactions (SMOI). However, the origins for the SMOI effect are still in debate. In this research, SMOI of Rh and vanadium oxide (as a promoter) supported on SiO2 were studied at the site level for the first time, which provides an insight into the modification of surface properties after high temperature reduction. H2 chemisorption, Fischer–Tropsch synthesis (FTS), and SSITKA (steady-state isotopic transient kinetic analysis) were used to probe the SMOI effects. The catalytic properties of the catalysts for CO hydrogenation were investigated using a differential fixed bed reactor at 230 °C and 1.8 atm, while for SSITKA, a reaction temperature of 280 °C and an excess of H2 was used to maximize methane production. The addition of V to Rh/SiO2 suppresses H2 chemisorption, and high reduction temperature further decreases H2 chemisorption on Rh/V/SiO2 but has little effect on Rh/SiO2. As reduction temperature increases, the activity for CO hydrogenation on Rh/SiO2 remains essentially unchanged, but the activity of Rh/V/SiO2 decreases significantly. SSITKA shows that the concentration of surface reaction intermediates decreases on Rh/V/SiO2 as the reduction temperature increases, but the activities of the reaction sites increase. The results suggest that Rh being covered by VOx species is probably the main reason for the decreased overall activity induced by high reduction temperature, but more active sites appear to be formed probably at the Rh–VOx interface.  相似文献   

14.
In this paper we demonstrate for the first time a compact power unit, where a methanol reforming catalyst is incorporated into the anode of a PEMFC. The proposed internal reforming methanol fuel cell (IRMFC) mainly comprises: (i) a H3PO4-imbibed polymer electrolyte based on aromatic polyethers bearing pyridine units, able to operate at 200 °C and (ii) a 200 °C active and with zero CO emissions Cu–Mn–O methanol reforming catalyst supported on copper foam. Methanol is being reformed inside the anode compartment of the fuel cell at 200 °C producing H2, which is readily oxidized at the anode to produce electricity. The IRMFC showed promising electrochemical behavior and no signs of performance degradation for more than 72 h.  相似文献   

15.
A mesoporous aluminosilicate molecular sieve with MCM-41 type structure was synthesized using aluminum isopropoxide as the Al source. Supported Co–Mo/MCM-41 catalysts were prepared by co-impregnation of Co(NO3)2·6H2O and (NH4)6Mo7O24 followed by calcination and sulfidation. For comparison, conventional Al2O3-supported sulfided Co–Mo catalysts were also prepared using the same procedure. These two types of catalysts were examined at two different metal loading levels in hydrodesulfurization of a model fuel containing 3.5 wt% sulfur as dibenzothiophene in n-tridecane. At 350–375°C under higher H2 pressure (6.9 MPa), sulfided Co–Mo/MCM-41 catalysts show higher hydrogenation and hydrocracking activities at both normal and high metal loading levels, whereas Co–Mo/Al2O3 catalysts show higher selectivity to desulfurization. Co–Mo/MCM-41 catalyst at high metal loading level is substantially more active than the Co–Mo/Al2O3 catalysts.  相似文献   

16.
The hydrodesulfurization (HDS) of benzothiophene (BT) and dihydrobenzothiophene (DHBT) was studied over a sulfided Mo/γ-Al2O3 catalyst at 5 MPa and 280 and 300 °C. In the absence of H2S, benzothiophene reacted by hydrogenation to dihydrobenzothiophene and by hydrogenolysis to ethylbenzene (EB), and dihydrobenzothiophene reacted by hydrogenolysis to ethylbenzene. H2S inhibited both hydrogenation and hydrogenolysis, but the latter much more strongly. The reverse inhibition was observed for 2-methylpiperidine (MPi). In the presence of H2S and/or 2-methylpiperidine, dihydrobenzothiophene reacted to ethylbenzene as well as by total hydrogenation to octahydrobenzothiophene, and on to ethylcyclohexenes and ethylcyclohexane. Dihydrobenzothiophene did not react back to benzothiophene at and below 300 °C, while the equivalent tetrahydrodibenzothiophene reacted fast to an equilibrium with tetrahydrodibenzothiophene, due to stabilization of the vinylic bond by the alkyl groups. The observed products and kinetic results were explained by a model in which the CS bonds were mainly broken by hydrogenolysis.  相似文献   

17.
Selective methanation of CO over supported Ru catalysts   总被引:1,自引:0,他引:1  
The catalytic performance of supported ruthenium catalysts for the selective methanation of CO in the presence of excess CO2 has been investigated with respect to the loading (0.5–5.0 wt.%) and mean crystallite size (1.3–13.6 nm) of the metallic phase as well as with respect to the nature of the support (Al2O3, TiO2, YSZ, CeO2 and SiO2). Experiments were conducted in the temperature range of 170–470 °C using a feed composition consisting of 1%CO, 50% H2 15% CO2 and 0–30% H2O (balance He). It has been found that, for all catalysts investigated, conversion of CO2 is completely suppressed until conversion of CO reaches its maximum value. Selectivity toward methane, which is typically higher than 70%, increases with increasing temperature and becomes 100% when the CO2 methanation reaction is initiated. Increasing metal loading results in a significant shift of the CO conversion curve toward lower temperatures, where the undesired reverse water–gas shift reaction becomes less significant. Results of kinetic measurements show that CO/CO2 hydrogenation reactions over Ru catalysts are structure sensitive, i.e., the reaction rate per surface metal atom (turnover frequency, TOF) depends on metal crystallite size. In particular, for Ru/TiO2 catalysts, TOFs of both CO (at 215 °C) and CO2 (at 330 °C) increase by a factor of 40 and 25, respectively, with increasing mean crystallite size of Ru from 2.1 to 4.5 nm, which is accompanied by an increase of selectivity to methane. Qualitatively similar results were obtained from Ru catalysts supported on Al2O3. Experiments conducted with the use of Ru catalyst of the same metal loading (5 wt.%) and comparable crystallite size show that the nature of the metal oxide support affects significantly catalytic performance. In particular, the turnover frequency of CO is 1–2 orders of magnitude higher when Ru is supported on TiO2, compared to YSZ or SiO2, whereas CeO2- and Al2O3-supported catalysts exhibit intermediate performance. Optimal results were obtained over the 5%Ru/TiO2 catalyst, which is able to completely and selectively convert CO at temperatures around 230 °C. Addition of water vapor in the feed does not affect CO hydrogenation but shifts the CO2 conversion curve toward higher temperatures, thereby further improving the performance of this catalyst for the title reaction. In addition, long-term stability tests conducted under realistic reaction conditions show that the 5%Ru/TiO2 catalyst is very stable and, therefore, is a promising candidate for use in the selective methanation of CO for fuel cell applications.  相似文献   

18.
The present review paper highlights on the recent progress in Japan on the hot gas cleanup of HCl, H2S and NH3 in raw fuel gas for coal-based, combined cycle power generation technologies. It has been shown that NaAlO2, prepared by mixing Na2CO3 solution with Al2O3 sol, can reduce HCl in an air-blown gasification gas from the initial 200 ppm to < 1 ppm at 400 °C, and it is tolerable for 200 ppm H2S. With regard to the removal of H2S, studies on the stability and durability of ZnFe2O4 sorbent in a simulated fuel gas have indicated the presence of an optimal operation temperature from the viewpoint of the suppression of both vaporization of metallic Zn and carbon formation from CO. High-performance TiO2-supported ZnFe2O4, which can decrease 1000 ppm H2S to < 1 ppm at 450 °C and 1 MPa, has been developed by the homogeneous precipitation method using a mixture of SiO2 sol and an aqueous solution of Zn and Fe nitrates, followed by mixing with TiO2. Although this sorbent is regenerable and durable, the sorption ability should be improved in a syngas-rich fuel gas from an O2-blown gasifier. A novel method to prepare carbon-supported ZnFe2O4 and CaFe2O4 by impregnating the corresponding nitrate solution with brown coal has been proposed, and the large desulfurization capacity of almost 100% has been achieved in the removal of 4000 ppm H2S around 450 °C. The present authors have demonstrated that an Australian limonite rich in α-FeOOH is practically feasible as the catalyst material for the decomposition of 2000 ppm NH3 in a syngas-rich gas of 25 vol.% H2/50 vol.% CO at 750 °C, because small amounts of H2O and CO2 added to the gas can work efficiently for inhibiting carbon deposition from the CO.  相似文献   

19.
The aim of this study is to develop a process for the removal of Hg0 using H2S over iron oxides sorbents, which will be located just before the wet desulfurization unit and catalytic COS converter of a coal gasification system. It is necessary to understand the reactions between the iron oxide sorbent and other components of the fuel gas such as H2S, CO, H2, H2O, etc. In this study, the sulfidation behavior and activity for COS formation during Hg0 removal from coal derived fuel gas over iron oxides prepared by precipitation and supported iron oxide (1 wt% Fe2O3/TiO2) prepared by conventional impregnation were investigated. The iron oxide samples were dried at 110 °C (designated as Fe2O3-110) and calcined at 300 and 550 °C (Fe2O3-300 and Fe2O3-550). The sulfidation behavior of iron oxide sorbents in coal derived fuel gas was investigated by thermo-gravimetric analysis (TGA). COS formation during Hg0 removal over iron oxide sorbents was also investigated using a laboratory-scale fixed-bed reactor. It was seen that the Hg0 removal activity of the sorbents increased with the decrease of calcinations temperature of iron oxide and extent of sulfidation of the sorbents also increased with the decrease of calcination temperature. The presence of CO suppressed the weight gain of iron oxide due to sulfidation. COS was formed during the Hg0 removal experiments over Fe2O3-110. However, in the cases of calcined iron oxides (Fe2O3-300, Fe2O3-550) and 1 wt% Fe2O3/TiO2, formation of COS was not observed but the Hg0 removal activity of 1 wt% Fe2O3/TiO2 was high. Both FeS and FeS2 were active for Hg0 removal in coal derived fuel gas without forming any COS.  相似文献   

20.
A natural Maghnia clay was pillared by Al13 and impregnated by 3–10 wt.% Me (Me = Rh, Ni, Pd, Ce) to be used as catalysts in the reforming of methane with carbon dioxide to synthesis gas. The structural and textural properties of materials calcined at 450 °C were determined by several techniques (XRD, FT-IR, 27Al magic angle spinning (MAS) NMR, X-ray photoelectron spectroscopy (XPS), BET, thermogravimetric analysis (TGA)–DSC, H2-temperature programmed reduction (TPR) and NH3-TPR). Although impurities are present in the Al-pillared layered clay (PILC) support, most properties are close to those of pure Al-pillared Na-montmorillonite. Impregnation and calcination leads to the plugging of most micropores by clusters or microparticles of oxides. The NMR resonances of AlVI and AlIV specie are not modified after impregnation, and AlVI/AlIV ratio only varies on loading when compared to Al-PILC. Catalytic experiments show that the most active catalyst is 3% Rh/Al-PILC on which 88 mol.% of methane is converted at 650 °C with a minimum amount of carbon deposit. The conversions decrease along the 3% Rh ≈ 10% Ni > 3% Pd > 3% Ni > 3% Ce series. The H2/CO ratio amounts to 1.1 with Rh and to 0.85 with Pd which are metallic at the temperature of reaction, but it has a lower value with Ni and Ce due to the RWGS reaction known to proceed in the presence of oxides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号