首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Cancer is one of the leading causes of death worldwide, despite the large efforts to improve the understanding of cancer biology and development of treatments. The attempts to improve cancer treatment are limited by the complexity of the local milieu in which cancer cells exist. The tumor microenvironment (TME) consists of a diverse population of tumor cells and stromal cells with immune constituents, microvasculature, extracellular matrix components, and gradients of oxygen, nutrients, and growth factors. The TME is not recapitulated in traditional models used in cancer investigation, limiting the translation of preliminary findings to clinical practice. Advances in 3D cell culture, tissue engineering, and microfluidics have led to the development of “cancer‐on‐a‐chip” platforms that expand the ability to model the TME in vitro and allow for high‐throughput analysis. The advances in the development of cancer‐on‐a‐chip platforms, implications for drug development, challenges to leveraging this technology for improved cancer treatment, and future integration with artificial intelligence for improved predictive drug screening models are discussed.  相似文献   

3.
4.
5.
Responsive multifunctional organic/inorganic nanohybrids are promising for effective and precise imaging‐guided therapy of cancer. In this work, a near‐infrared (NIR)‐triggered multifunctional nanoplatform comprising Au nanorods (Au NRs), mesoporous silica, quantum dots (QDs), and two‐armed ethanolamine‐modified poly(glycidyl methacrylate) with cyclodextrin cores (denoted as CD‐PGEA) has been successfully fabricated for multimodal imaging‐guided triple‐combination treatment of cancer. A hierarchical hetero‐structure is first constructed via integration of Au NRs with QDs through a mesoporous silica intermediate layer. The X‐ray opacity and photoacoustic (PA) property of Au NRs are utilized for tomography (CT) and PA imaging, and the imaging sensitivity is further enhanced by the fluorescent QDs. The mesoporous feature of silica allows the loading of a typical antitumor drug, doxorubicin (DOX), which are sealed by the polycationic gatekeepers, low toxic hydroxyl‐rich CD‐PGEA/pDNA complexes, realizing the co‐delivery of drug and gene. The photothermal effect of Au NRs is utilized for photothermal therapy (PTT). More interestingly, such photothermal effect also induces a cascade of NIR‐triggered release of DOX through the facilitated detachment of CD‐PGEA gatekeepers for controlled chemotherapy. The resultant chemotherapy and gene therapy for glioma tumors are complementary for the efficiency of PTT. This work presents a novel responsive multifunctional imaging‐guided therapy platform, which combines fluorescent/PA/CT imaging and gene/chemo/photothermal therapy into one nanostructure.  相似文献   

6.
Poor drug penetration into tumor cells and tissues is a worldwide difficulty in cancer therapy. A strategy is developed for virion‐like membrane‐breaking nanoparticles (MBNs) to smoothly accomplish tumor‐activated cell‐and‐tissue dual‐penetration for surmounting impermeable drug‐resistant cancer. Tailor‐made dendritic arginine‐rich peptide prodrugs are designed to mimic viral protein transduction domains and globular protein architectures. Attractively, these protein mimics self‐assemble into virion‐like nanoparticles in aqueous solution, having highly ordered secondary structure. Tumor‐specific acidity conditions would activate the membrane‐breaking ability of these virion‐like nanoparticles to perforate artificial and natural membrane systems. As expected, MBNs achieve highly efficient drug penetration into drug‐resistant human ovarian (SKOV3/R) cancer cells. Most importantly, the well‐organized MBNs can pass through endothelial/tumor cells and spread from one cell to another one. Intravenous injection of MBNs into nude mice bearing impermeable SKOV3/R tumors suggests that the MBNs can recognize the tumor tissue after prolonged blood circulation, evoke the membrane‐breaking function for robust transvascular extravasation, and penetrate into the deep tumor tissue. This work provides the first demonstration of sophisticated molecular and supramolecular engineering of virion‐like MBNs to realize the long‐awaited cell‐and‐tissue dual‐penetration, contributing to the development of a brand‐new avenue for dealing with incurable cancers.  相似文献   

7.
Fluorescence bioimaging affords a vital tool for both researchers and surgeons to molecularly target a variety of biological tissues and processes. This review focuses on summarizing organic dyes emitting at a biological transparency window termed the near‐infrared‐II (NIR‐II) window, where minimal light interaction with the surrounding tissues allows photons to travel nearly unperturbed throughout the body. NIR‐II fluorescence imaging overcomes the penetration/contrast bottleneck of imaging in the visible region, making it a remarkable modality for early diagnosis of cancer and highly sensitive tumor surgery. Due to their convenient bioconjugation with peptides/antibodies, NIR‐II molecular dyes are desirable candidates for targeted cancer imaging, significantly overcoming the autofluorescence/scattering issues for deep tissue molecular imaging. To promote the clinical translation of NIR‐II bioimaging, advancements in the high‐performance small molecule–derived probes are critically important. Here, molecules with clinical potential for NIR‐II imaging are discussed, summarizing the synthesis and chemical structures of NIR‐II dyes, chemical and optical properties of NIR‐II dyes, bioconjugation and biological behavior of NIR‐II dyes, whole body imaging with NIR‐II dyes for cancer detection and surgery, as well as NIR‐II fluorescence microscopy imaging. A key perspective on the direction of NIR‐II molecular dyes for cancer imaging and surgery is also discussed.  相似文献   

8.
Bone metastasis occurs at ≈70% frequency in metastatic breast cancer. The mechanisms used by tumors to hijack the skeleton, promote bone metastases, and confer therapeutic resistance are poorly understood. This has led to the development of various bone models to investigate the interactions between cancer cells and host bone marrow cells and related physiological changes. However, it is challenging to perform bone studies due to the difficulty in periodic sampling. Herein, a bone‐on‐a‐chip (BC) is reported for spontaneous growth of a 3D, mineralized, collagenous bone tissue. Mature osteoblastic tissue of up to 85 µm thickness containing heavily mineralized collagen fibers naturally formed in 720 h without the aid of differentiation agents. Moreover, co‐culture of metastatic breast cancer cells is examined with osteoblastic tissues. The new bone‐on‐a‐chip design not only increases experimental throughput by miniaturization, but also maximizes the chances of cancer cell interaction with bone matrix of a concentrated surface area and facilitates easy, frequent observation. As a result, unique hallmarks of breast cancer bone colonization, previously confirmed only in vivo, are observed. The spontaneous 3D BC keeps the promise as a physiologically relevant model for the in vitro study of breast cancer bone metastasis.  相似文献   

9.
Most chemotherapeutic drugs and their nanomedicine formulations exert anticancer activity by inducing cancer cell apoptosis. However, cancer cells inherently have and acquire many antiapoptosis mechanisms, causing cancer drug resistance and poor prognoses in patients. Herein, a potent paraptosis‐inducing nanomedicine is reported that causes quick nonapoptotic death of cancer cells, overcoming apoptosis‐based resistance and effectively inhibiting drug‐resistant tumor growth. The nanomedicine is composed of micelles made from an amphiphilic 8‐hydroxyquinoline (HQ)‐conjugate block copolymer with polyethylene glycol. Cu2+ can catalyze the hydrolysis of the HQ conjugation linker and liberate HQ, and these molecules can form the complex Cu(HQ)2, a strong proteasome inhibitor effective at inducing cell paraptosis. In vivo, the Cu2+‐responsive HQ‐releasing micelles respond to elevated tumor Cu2+ levels or externally administered Cu2+ and effectively inhibit the growth of human breast adenocarcinoma doxorubicin‐resistant (MCF‐7/ADR) tumors. Compared with other nanomedicines that overcome drug resistance via delivering several agents or even siRNA, this paraptosis‐inducing nanomedicine provides a simple but potent approach to overcoming cancer drug resistance.  相似文献   

10.
11.
12.
Antimonene (AM) is a recently described two‐dimensional (2D) elemental layered material. In this study, a novel photonic drug‐delivery platform based on 2D PEGylated AM nanosheets (NSs) is developed. The platform's multiple advantages include: i) excellent photothermal properties, ii) high drug‐loading capacity, iii) spatiotemporally controlled drug release triggered by near‐infrared (NIR) light and moderate acidic pH, iv) superior accumulation at tumor sites, v) deep tumor penetration by both extrinsic stimuli (i.e., NIR light) and intrinsic stimuli (i.e., pH), vi) excellent multimodal‐imaging properties, and vii) significant inhibition of tumor growth with no observable side effects and potential degradability, thus addressing several key limitations of cancer nanomedicines. The intracellular fate of the prepared NSs is also revealed for the first time, providing deep insights that improve cellular‐level understanding of the nano–bio interactions of AM‐based NSs and other emerging 2D nanomaterials. To the best of knowledge, this is the first report on 2D AM‐based photonic drug‐delivery platforms, possibly marking an exciting jumping‐off point for research into the application of 2D AM nanomaterials in cancer theranostics.  相似文献   

13.
In vivo molecular imaging of tumors targeting a specific cancer cell marker is a promising strategy for cancer diagnosis and imaging guided surgery and therapy. While targeted imaging often relies on antibody‐modified probes, peptides can afford targeting probes with small sizes, high penetrating ability, and rapid excretion. Recently, in vivo fluorescence imaging in the second near‐infrared window (NIR‐II, 1000–1700 nm) shows promise in reaching sub‐centimeter depth with microscale resolution. Here, a novel peptide (named CP) conjugated NIR‐II fluorescent probe is reported for molecular tumor imaging targeting a tumor stem cell biomarker CD133. The click chemistry derived peptide‐dye (CP‐IRT dye) probe afforded efficient in vivo tumor targeting in mice with a high tumor‐to‐normal tissue signal ratio (T/NT > 8). Importantly, the CP‐IRT probes are rapidly renal excreted (≈87% excretion within 6 h), in stark contrast to accumulation in the liver for typical antibody‐dye probes. Further, with NIR‐II emitting CP‐IRT probes, urethra of mice can be imaged fluorescently for the first time noninvasively through intact tissue. The NIR‐II fluorescent, CD133 targeting imaging probes are potentially useful for human use in the clinic for cancer diagnosis and therapy.  相似文献   

14.
15.
Emerging nanotechnologies show unprecedented advantages in accelerating cancer theranostics. Among them, two‐dimensional nanomaterials (2DNMs) represent a novel type of material with versatile physicochemical properties that have enabled a new horizon for applications in both cancer diagnosis and therapy. Studies have demonstrated that 2DNMs may be used in diverse aspects, including i) cancer detection due to their high propensity towards tumor markers; ii) molecular imaging for guided tumor therapies, and iii) drug and gene loading, photothermal and photodynamic cancer therapies. However, their biomedical applications raise concerns due to the limited understanding of their in vivo metabolism, transformation and possible toxicities. In this comprehensive review, the state‐of‐the‐art development of 2DNMs and their implications for cancer nanotheranostics are presented. The modification strategies to enhance the biocompatibility of 2DNMs are also reviewed.  相似文献   

16.
Alpha‐methylacyl‐CoA racemase (AMACR) has been proven to be consistently overexpressed in prostate cancer epitheliums, and is expected to act as a positive biomarker for the diagnosis of prostate carcinoma in clinical practice. Here, a strategy for specific determination of AMACR in real human serum by using an electrochemical microsensor system is presented. In order to implement the protocol, a self‐organized nanohybrid consisting of metal nanopillars in a 2D MoS2 matrix is developed as material for the sensing interface. The testing signal outputs are strongly enhanced with the presence of the nanohybrids owing to that the metal pillars provide an efficient mass difussion and electron transfer path to the MoS2 film surface. Furthermore, the phase‐regulated sensing mechanism over MoS2 is noticed and demonstrated by density functional theory calculation and experiments. The explored MoS2 based nanohybrids are employed for the fabrication of an electrochemical microsensor, presenting good linear relationship in both ng µL?1 and pg µL?1 ranges for AMACR quantification. The sampling analysis of human serum indicates that this microsensor has good diagnostic specificity and sensitivity toward AMACR. The proposed electrochemical microsensor system also demonstrates the advantages of convenience, cost‐effectiveness, and disposability, resulting in a potential integrated microsystem for point‐of‐care prostate cancer diagnosis.  相似文献   

17.
Non‐small cell lung cancer (NSCLC) is the most common type of lung cancer and the cause of high rate of mortality. The epidermal growth factor receptor (EGFR)‐targeted tyrosine kinase inhibitors are used to treat NSCLC, yet their curative effects are usually compromised by drug resistance. This study demonstrates a nanodrug for treating tyrosine‐kinase‐inhibitor‐resistant NSCLC through inhibiting upstream and downstream EGFR signaling pathways. The main molecule of the nanodrug is synthesized by linking a tyrosine kinase inhibitor gefitinib and a near‐infrared dye (NIR) on each side of a disulfide via carbonate bonds, and the nanodrug is then obtained through nanoparticle formation of the main molecule in aqueous medium and concomitant encapsulation of a serine threonine protein kinase (Akt) inhibitor celastrol. Upon administration, the nanodrug accumulates at the tumor region of NSCLC‐bearing mice and releases the drugs for tumor inhibition, and the dye for fluorescence and optoacoustic imaging. Through suppressing the phosphorylation of upstream EGFR and downstream Akt in the EGFR pathway by gefitinib and celastrol, respectively, the nanodrug exhibits high inhibition efficacy against orthotopic NSCLC in mouse models.  相似文献   

18.
19.
The Smooth‐Particle‐Hydrodynamics (SPH) method is derived in a novel manner by means of a Galerkin approximation applied to the Lagrangian equations of continuum mechanics as in the finite‐element method. This derivation is modified to replace the SPH interpolant with the Moving‐Least‐Squares (MLS) interpolant of Lancaster and Saulkaskas, and define a new particle volume which ensures thermodynamic compatibility. A variable‐rank modification of the MLS interpolants which retains their desirable summation properties is introduced to remove the singularities that occur when divergent flow reduces the number of neighbours of a particle to less than the minimum required. A surprise benefit of the Galerkin SPH derivation is a theoretical justification of a common ad hoc technique for variable‐h SPH. The new MLSPH method is conservative if an anti‐symmetric quadrature rule for the stiffness matrix elements can be supplied. In this paper, a simple one‐point collocation rule is used to retain similarity with SPH, leading to a non‐conservative method. Several examples document how MLSPH renders dramatic improvements due to the linear consistency of its gradients on three canonical difficulties of the SPH method: spurious boundary effects, erroneous rates of strain and rotation and tension instability. Two of these examples are non‐linear Lagrangian patch tests with analytic solutions with which MLSPH agrees almost exactly. The examples also show that MLSPH is not absolutely stable if the problems are run to very long times. A linear stability analysis explains both why it is more stable than SPH and not yet absolutely stable and an argument is made that for realistic dynamic problems MLSPH is stable enough. The notion of coherent particles, for which the numerical stability is identical to the physical stability, is introduced. The new method is easily retrofitted into a generic SPH code and some observations on performance are made. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

20.
The advancements in nanotechnology have created multifunctional nanomaterials aimed at enhancing diagnostic accuracy and treatment efficacy for cancer. However, the ability to target deep‐seated tumors remains one of the most critical challenges for certain nanomedicine applications. To this end, X‐ray‐excited theranostic techniques provide a means of overcoming the limits of light penetration and tissue attenuation. Herein, a comprehensive overview of the recent advances in nanotechnology‐enhanced X‐ray‐excited imaging and therapeutic methodologies is presented, with an emphasis on the design of multifunctional nanomaterials for contrast‐enhanced computed tomography (CT) imaging, X‐ray‐excited optical luminescence (XEOL) imaging, and X‐ray‐excited multimodal synchronous/synergistic therapy. The latter is based on the concurrent use of radiotherapy with chemotherapy, gas therapy, photodynamic therapy, or immunotherapy. Moreover, the featured biomedical applications of X‐ray‐excited deep theranostics are discussed to highlight the advantages of X‐ray in high‐sensitivity detection and efficient elimination of malignant tumors. Finally, key issues and technical challenges associated with this deep theranostic technology are identified, with the intention of advancing its translation into the clinic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号