首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lithium metal batteries (such as lithium–sulfur, lithium–air, solid state batteries with lithium metal anode) are highly considered as promising candidates for next‐generation energy storage systems. However, the unstable interfaces between lithium anode and electrolyte definitely induce the undesired and uncontrollable growth of lithium dendrites, which results in the short‐circuit and thermal runaway of the rechargeable batteries. Herein, a dual‐layered film is built on a Li metal anode by the immersion of lithium plates into the fluoroethylene carbonate solvent. The ionic conductive film exhibits a compact dual‐layered feature with organic components (ROCO2Li and ROLi) on the top and abundant inorganic components (Li2CO3 and LiF) in the bottom. The dual‐layered interface can protect the Li metal anode from the corrosion of electrolytes and regulate the uniform deposition of Li to achieve a dendrite‐free Li metal anode. This work demonstrates the concept of rational construction of dual‐layered structured interfaces for safe rechargeable batteries through facile surface modification of Li metal anodes. This not only is critically helpful to comprehensively understand the functional mechanism of fluoroethylene carbonate but also affords a facile and efficient method to protect Li metal anodes.  相似文献   

2.
Beyond a traditional view that metal nanoparticles formed upon electrochemical reaction are inactive against lithium, recently their electrochemical participations are manifested and elucidated as catalytic and interfacial effects. Here, ruthenium metal composed of ≈5 nm nanoparticles is prepared and the pure ruthenium as a lithium‐ion battery anode for complete understanding on anomalous lithium storage reaction mechanism is designed. In particular, the pure metal electrode is intended for eliminating the electrochemical reaction‐derived Li2O phase accompanied by catalytic Li2O decomposition and the interfacial lithium storage at Ru/Li2O phase boundary, and thereby focusing on the ruthenium itself in exploring its electrochemical reactivity. Intriguingly, unusual lithium storage not involving redox reactions with electron transfer but leading to lattice expansion is identified in the ruthenium electrode. Size‐dependent charge redistribution at surface enables additional lithium adsorption to occur on the inactive but more environmentally sensitive nanoparticles, providing innovative insight into dynamic electrode environments in rechargeable lithium chemistry.  相似文献   

3.
To achieve a high reversibility and long cycle life for Li–O2 battery system, the stable tissue‐directed/reinforced bifunctional separator/protection film (TBF) is in situ fabricated on the surface of metallic lithium anode. It is shown that a Li–O2 cell composed of the TBF‐modified lithium anodes exhibits an excellent anodic reversibility (300 cycles) and effectively improved cathodic long lifetime (106 cycles). The improvement is attributed to the ability of the TBF, which has chemical, electrochemical, and mechanical stability, to effectively prevent direct contact between the surface of the lithium anode and the highly reactive reduced oxygen species (Li2O2 or its intermediate LiO2) in cell. It is believed that the protection strategy describes here can be easily extended to other next‐generation high energy density batteries using metal as anode including Li–S and Na–O2 batteries.  相似文献   

4.
The lithium (Li) metal anode is confronted by severe interfacial issues that strongly hinder its practical deployment. The unstable interfaces directly induce unfavorable low cycling efficiency, dendritic Li deposition, and even strong safety concerns. An advanced artificial protective layer with single‐ion pathways holds great promise for enabling a spatially homogeneous ionic and electric field distribution over Li metal surface, therefore well protecting the Li metal anode during long‐term working conditions. Herein, a robust dual‐phase artificial interface is constructed, where not only the single‐ion‐conducting nature, but also high mechanical rigidity and considerable deformability can be fulfilled simultaneously by the rational integration of a garnet Al‐doped Li6.75La3Zr1.75Ta0.25O12‐based bottom layer and a lithiated Nafion top layer. The as‐constructed artificial solid electrolyte interphase is demonstrated to significantly stabilize the repeated cell charging/discharging process via regulating a facile Li‐ion transport and a compact Li plating behavior, hence contributing to a higher coulombic efficiency and a considerably enhanced cyclability of lithium metal batteries. This work highlights the significance of rational manipulation of the interfacial properties of a working Li metal anode and affords fresh insights into achieving dendrite‐free Li deposition behavior in a working battery.  相似文献   

5.
Although metallic lithium is an extremely promising anode for lithium‐based batteries due to its high theoretical capacity, the uncontrollable growth of lithium dendrites, in particular under deep stripping and plating, have stagnated its application. It is demonstrated that parallelly aligned MXene (Ti3C2Tx ) layers enable the efficient guiding of lithium nucleation and growth on the surface of 2D MXene nanosheets, giving rise to horizontal‐growth lithium anodes. Moreover, the inherent fluorine terminations in MXene afford a uniform and durable solid electrolyte interface with lithium fluoride at the anode/electrolyte interface, efficiently regulating electromigration of lithium ions. Thus, a dendrite‐free lithium anode with a long cycle life up to 900 h and excellent deep stripping–plating capabilities up to 35 mAh cm?2 is achieved, which can further serve as an anode for a lithium metal battery, exhibiting high cycle stability up to 1000 cycles.  相似文献   

6.
Rechargeable magnesium (Mg) metal batteries are a promising candidate for “post-Li-ion batteries” due to their high capacity, high abundance, and most importantly, highly reversible and dendrite-free Mg metal anode. However, the formation of passivating surface film rather than Mg2+-conducting solid electrolyte interphase (SEI) on Mg anode surface has always restricted the development of rechargeable Mg batteries. A stable SEI is constructed on the surface of Mg metal anode by the partial decomposition of a pristine Li electrolyte in the electrochemical process. This Li electrolyte is easily prepared by dissolving lithium tetrakis(hexafluoroisopropyloxy)borate (Li[B(hfip)4]) in dimethoxyethane. It is noteworthy that Mg2+ can be directly introduced into this Li electrolyte during the initial electrochemical cycles for in situ forming a hybrid Mg2+/Li+ electrolyte, and then the cycled electrolyte can conduct Mg-ion smoothly. The existence of this as-formed SEI blocks the further parasitic reaction of Mg metal anode with electrolyte and enables this electrolyte enduring long-term electrochemical cycles stably. This approach of constructing superior SEI on Mg anode surface and exploiting novel Mg electrolyte provides a new avenue for practical application of high-performance rechargeable Mg batteries.  相似文献   

7.
The formation of a stable solid electrolyte interphase (SEI) is a prerogative for functional lithium metal batteries. Herein, the formation and evolution of such SEI in contact with glyme‐based electrolytes is investigated under open circuit voltage and several constant current cycles. An important conclusion of the study is that LixSy species are nonbeneficial SEI components, compared to the Li3N counterpart. In addition, chemical (X‐ray photoelectron spectroscopy, XPS) and electrochemical (impedance spectroscopy) evolution of SEI under galvanostatic conditions are comprehensively tracked.  相似文献   

8.
Here a simple and an environmentally friendly approach is developed for the fabrication of Si–void@SiOx nanowires of a high‐capacity Li‐ion anode material. The outer surface of the robust SiOx backbone and the inside void structure in Si–void@SiOx nanowires appropriately suppress the volume expansion and lead to anisotropic swelling morphologies of Si nanowires during lithiation/delithiation, which is first demonstrated by the in situ lithiation process. Remarkably, the Si–void@SiOx nanowire electrode exhibits excellent overall lithium‐storage performance, including high specific capacity, high rate property, and excellent cycling stability. A reversible capacity of 1981 mAh g?1 is obtained in the fourth cycle, and the capacity is maintained at 2197 mAh g?1 after 200 cycles at a current density of 0.5 C. The outstanding overall properties of the Si–void@SiOx nanowire composite make it a promising anode material of lithium‐ion batteries for the power‐intensive energy storage applications.  相似文献   

9.
Iron sulfides with high theoretical capacity and low cost have attracted extensive attention as anode materials for sodium ion batteries. However, the inferior electrical conductivity and devastating volume change and interface instability have largely hindered their practical electrochemical properties. Here, ultrathin amorphous TiO2 layer is constructed on the surface of a metal–organic framework derived porous Fe7S8/C electrode via a facile atomic layer deposition strategy. By virtue of the porous structure and enhanced conductivity of the Fe7S8/C, the electroactive TiO2 layer is expected to effectively improve the electrode interface stability and structure integrity of the electrode. As a result, the TiO2‐modified Fe7S8/C anode exhibits significant performance improvement for sodium‐ion batteries. The optimal TiO2‐modified Fe7S8/C electrode delivers reversible capacity of 423.3 mA h g?1 after 200 cycles with high capacity retention of 75.3% at 0.2 C. Meanwhile, the TiO2 coating is conducive to construct favorable solid electrolyte interphase, leading to much enhanced initial Coulombic efficiency from 66.9% to 72.3%. The remarkable improvement suggests that the interphase modification holds great promise for high‐performance metal sulfide‐based anode materials for sodium‐ion batteries.  相似文献   

10.
Notorious lithium dendrite causes severe capacity fade and harsh safety issues of lithium metal batteries, which hinder the practical applications of lithium metal electrodes in higher energy rechargeable batteries. Here, a kind of 3D‐cross‐linked composite network is successfully employed as a flexible‐rigid coupling protective layer on a lithium metal electrode. During the plating/stripping process, the composite protective layer would enable uniform distribution of lithium ions in the adjacent regions of the lithium electrode, resulting in a dendrite‐free deposition at a current density of 2 mA cm?2. The LiNi0.5Mn1.5O4‐based lithium metal battery presents an excellent cycling stability at a voltage range of 3.5–5.0 V with the induction of 3D‐cross‐linked composite protective layer. From an industrial field application of view, thin lithium metal electrodes (40 µm, with 4 times excess lithium) can be used in LiNi0.5Mn1.5O4 (with industrially significant loading of 18 mg cm?2 and 2.6 mAh cm?2)‐based lithium metal batteries, which reveals a promising opportunity for practical applicability in high energy lithium metal batteries.  相似文献   

11.
Lithium metal is considered as the most promising anode material due to its high theoretical specific capacity and the low electrochemical reduction potential. However, severe dendrite problems have to be addressed for fabricating stable and rechargeable batteries (e.g., lithium–iodine batteries). To fabricate a high‐performance lithium–iodine (Li–I2) battery, a 3D stable lithium metal anode is prepared by loading of molten lithium on carbon cloth doped with nitrogen and phosphorous. Experimental observations and theoretical calculation reveal that the N,P codoping greatly improves the lithiophilicity of the carbon cloth, which not only enables the uniform loading of molten lithium but also facilitates reversible lithium stripping and plating. Dendrites formation can thus be significantly suppressed at a 3D lithium electrode, leading to stable voltage profiles over 600 h at a current density of 3 mA cm?2. A fuel cell with such an electrode and a lithium–iodine cathode shows impressive long‐term stability with a capacity retention of around 100% over 4000 cycles and enhanced high‐rate capability. These results demonstrate the promising applications of 3D stable lithium metal anodes in next‐generation rechargeable batteries.  相似文献   

12.
Multicomponent materials with various double cations have been studied as anode materials of lithium‐ion batteries (LIBs). Heterostructures formed by coupling different‐bandgap nanocrystals enhance the surface reaction kinetics and facilitate charge transport because of the internal electric field at the heterointerface. Accordingly, metal selenites can be considered efficient anode materials of LIBs because they transform into metal selenide and oxide nanocrystals in the first cycle. However, few studies have reported synthesis of uniquely structured metal selenite microspheres. Herein, synthesis of high‐porosity CoSeO3 microspheres is reported. Through one‐pot oxidation at 400 °C, CoSex–C microspheres formed by spray pyrolysis transform into CoSeO3 microspheres showing unordinary cycling and rate performances. The conversion mechanism of CoSeO3 microspheres for lithium‐ion storage is systematically studied by cyclic voltammetry, in situ X‐ray diffraction and electrochemical impedance spectroscopy, and transmission electron microscopy. The reversible reaction mechanism of the CoSeO3 phase from the second cycle onward is evaluated as CoO + xSeO2 + (1 ? x)Se + 4(x + 1)Li++ 4( x + 1)e? ? Co + (2x + 1)Li2O + Li2Se. The CoSeO3 microspheres show a high reversible capacity of 709 mA h g?1 for the 1400th cycle at a current density of 3 A g?1 and a high reversible capacity of 526 mA h g?1 even at an extremely high current density of 30 A g?1.  相似文献   

13.
Lithium metal has attracted much research interest as a possible anode material for high‐energy‐density lithium‐ion batteries in recent years. However, its practical use is severely limited by uncontrollable deposition, volume expansion, and dendrite formation. Here, a metastable state of Li, Li cluster, that forms between LiC6 and Li dendrites when over‐lithiating carbon cloth (CC) is discovered. The Li clusters with sizes in the micrometer and submicrometer scale own outstanding electrochemical reversibility between Li+ and Li, allowing the CC/Li clusters composite anode to demonstrate a high first‐cycle coulombic efficiency (CE) of 94.5% ± 1.0% and a stable CE of 99.9% for 160 cycles, which is exceptional for a carbon/lithium composite anode. The CC/Li clusters composite anode shows a high capacity of 3 mAh cm?2 contributed by both Li+ intercalation and Li‐cluster formation, and excellent cycling stability with a signature sloping voltage profile. Furthermore, the CC/Li clusters composite anode can be assembled into full cells without precycling or prelithiation. The full cells containing bare CC as the anode and excessive LiCoO2 as the cathode exhibit high specific capacity and good cyclic stability in 200 cycles, stressing the advantage of controlled formation of Li clusters.  相似文献   

14.
Omnibearing acceleration of charge/ion transfer in Li4Ti5O12 (LTO) electrodes is of great significance to achieve advanced high‐rate anodes in lithium‐ion batteries. Here, a synergistic combination of hydrogenated LTO nanoparticles (H‐LTO) and N‐doped carbon fibers (NCFs) prepared by an electrodeposition‐atomic layer deposition method is reported. Binder‐free conductive NCFs skeletons are used as strong support for H‐LTO, in which Ti3+ is self‐doped along with oxygen vacancies in LTO lattice to realize enhanced intrinsic conductivity. Positive advantages including large surface area, boosted conductivity, and structural stability are obtained in the designed H‐LTO@NCF electrode, which is demonstrated with preeminent high‐rate capability (128 mAh g?1 at 50 C) and long cycling life up to 10 000 cycles. The full battery assembled by H‐LTO@NCFs anode and LiFePO4 cathode also exhibits outstanding electrochemical performance revealing an encouraging application prospect. This work further demonstrates the effectiveness of self‐doping of metal ions on reinforcing the high‐rate charge/discharge capability of batteries.  相似文献   

15.
Silicon doped tin oxide embedded porous carbon microspheres (Siy Sn1–y Ox @C) are synthesized. It is found that the doped Si not only improves the reversibility of lithiation/delithiation reactions, but also prevents Sn from aggregation. In addition, the doped Si introduces extra defects into the carbon matrix and produces Li+ conductive Li4SiO4, which accelerates Li+ diffusion. Together with the conductive, porous carbon matrix that provides void space to accommodate the volume change of Sn during charge/discharge cycling, the novel Siy Sn1–y Ox @C exhibits excellent electrochemical performance. It shows a high initial columbic efficiency of 75.9%. A charge (delithiation) capacity of 880.32 mA h g−1 is retained after 150 cycles, i.e., 91% of the initial capacity. These results indicate that the as‐synthesized Siy Sn1–y Ox @C is a promising anode material for lithium ion batteries.  相似文献   

16.
Lithium cobalt oxide nanobatteries offer exciting prospects in the field of nonvolatile memories and neuromorphic circuits. However, the precise underlying resistive switching (RS) mechanism remains a matter of debate in two‐terminal cells. Herein, intriguing results, obtained by secondary ion mass spectroscopy (SIMS) 3D imaging, clearly demonstrate that the RS mechanism corresponds to lithium migration toward the outside of the LixCoO2 layer. These observations are very well correlated with the observed insulator‐to‐metal transition of the oxide. Besides, smaller device area experimentally yields much faster switching kinetics, which is qualitatively well accounted for by a simple numerical simulation. Write/erase endurance is also highly improved with downscaling – much further than the present cycling life of usual lithium‐ion batteries. Hence very attractive possibilities can be envisaged for this class of materials in nanoelectronics.  相似文献   

17.
Here we demonstrate the rational design and synthesis of three‐layered TiO2@carbon@MoS2 hierarchical nanotubes for anode applications in lithium‐ion batteries (LIBs). Through an efficient step‐by‐step strategy, ultrathin MoS2 nanosheets are grown on nitrogen‐doped carbon (NC) coated TiO2 nanotubes to achieve the TiO2@NC@MoS2 tubular nanostructures. This smart design can effectively shorten the diffusion length of Li+ ions, increase electric conductivity of the electrode, relax volume variation of electrode materials upon cycling, and provide more active sites for electrochemical reactions. Owing to these structural and compositional features, the hierarchical TiO2@NC@MoS2 nanotubes manifest remarkable lithium storage performance with good rate capability and long cycle life.  相似文献   

18.
Considerable efforts are devoted to relieve the critical lithium dendritic and volume change problems in the lithium metal anode. Constructing uniform Li+ distribution and lithium “host” are shown to be the most promising strategies to drive practical lithium metal anode development. Herein, a uniform Li nucleation/growth behavior in a confined nanospace is verified by constructing vertical graphene on a 3D commercial copper mesh. The difference of solid‐electrolyte interphase (SEI) composition and lithium growth behavior in the confined nanospace is further demonstrated by in‐depth X‐ray photoelectron spectrometer (XPS) and line‐scan energy dispersive X‐ray spectroscopic (EDS) methods. As a result, a high Columbic efficiency of 97% beyond 250 cycles at a current density of 2 mA cm?2 and a prolonged lifespan of symmetrical cell (500 cycles at 5 mA cm?2) can be easily achieved. More meaningfully, the solid‐state lithium metal cell paired with the composite lithium anode and LiNi0.5Co0.2Mn0.3O2 (NCM) as the cathode also demonstrate reduced polarization and extended cycle. The present confined nanospace–derived hybrid anode can further promote the development of future all solid‐state lithium metal batteries.  相似文献   

19.
The use of high‐capacity anode materials to overcome the energy density limits imposed by the utilization of low‐theoretical‐capacity conventional graphite has recently drawn increased attention. Until now, stress management (including strategies relying on size, surface coating, and free volume control) has been achieved by addressing the critical problems originating from significant anode volume expansion upon lithiation. However, commercially viable alternatives to graphite have not yet been found. A new stress‐management strategy relying on the use of a lamellar nanosphere Si anode is proposed. Specifically, nanospheres comprising ≈50 nm Si nanoparticles encapsulated by SiOx /Si/SiOx /C layers with thicknesses of <20 nm per layer are synthesized via one‐pot chemical vapor deposition in various atmospheres. SiOx is found to act as a stress management interlayer when it is located between Si and mitigates stress intensification on the surface layer, allowing nanospheres to maintain their morphological integrity and promoting the formation of a stable solid electrolyte interphase layer during cycling. When tested using an industrial protocol, a full cell comprising a nanosphere/graphite blended anode and a lithium cobalt oxide cathode achieve an average energy density of 2440.2 Wh L?1 (1.72 times higher than that of conventional graphite) with a capacity retention ratio of 80% after 101 cycles.  相似文献   

20.
将不同浓度的苯甲酸钠改性的石墨电极作为锂离子电池的负极备用材料,并使用恒流充放电、循环伏安和交流阻抗等电化学方法表征电池的性能.结果表明,与初始的石墨电极相比,被改性后的石墨电极表现出更好的循环效率和稳定性,且在0.5C条件下,首次的充放电比容量分别为293.9mAh/g和326.4 mAh/g.主要原因是改性后的石墨电极的表面形成的SEI膜能有效抑制石墨材料的膨胀,并且更有利于锂离子的迁移.同时,采用量子化学方法计算了溶剂分子和苯甲酸钠的最低空轨道和最高占据轨道能量值.结合电化学表征和量子计算结果,苯甲酸钠改性石墨电极的最佳浓度为1.0%.此外,还研究了最佳浓度改性石墨电极的高温性能.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号