首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 856 毫秒
1.
Controlled delivery of protein therapeutics remains a challenge. Here, the inclusion of diselenide‐bond‐containing organosilica moieties into the framework of silica to fabricate biodegradable mesoporous silica nanoparticles (MSNs) with oxidative and redox dual‐responsiveness is reported. These diselenide‐bridged MSNs can encapsulate cytotoxic RNase A into the 8–10 nm internal pores via electrostatic interaction and release the payload via a matrix‐degradation controlled mechanism upon exposure to oxidative or redox conditions. After surface cloaking with cancer‐cell‐derived membrane fragments, these bioinspired RNase A‐loaded MSNs exhibit homologous targeting and immune‐invasion characteristics inherited from the source cancer cells. The efficient in vitro and in vivo anti‐cancer performance, which includes increased blood circulation time and enhanced tumor accumulation along with low toxicity, suggests that these cell‐membrane‐coated, dual‐responsive degradable MSNs represent a promising platform for the delivery of bio‐macromolecules such as protein and nucleic acid therapeutics.  相似文献   

2.
Nanocarrier‐mediated codelivery of multiple anticancer drugs is a potential strategy for enhanced efficacy of combination cancer treatment by unifying differential pharmacokinetic properties and maintaining an optimal ratio of drug cargoes. However, a programmable codelivery system is highly desired to deliver different therapeutics to their specific sites of action to pursue maximized combinational effect. Herein a liposome‐based nanoassembly (p53/C‐rNC/L‐FA) is developed for intracellular site‐specific delivery of an apoptotic protein cytochrome c (CytoC) and a plasmid DNA encoding tumor‐suppressing p53 protein (p53 DNA). p53/C‐rNC/L‐FA consists of an acid‐activated fusogenic liposomal membrane shell modified with folic acid (L‐FA) and a DNA/protein complex core assembled by the p53 DNA, protamine and CytoC‐encapsulated redox‐responsive nanocapsule (C‐rNC). Intratumoral and intraendosomal acidities promote membrane fusion between liposome and biomembrane, resulting in release of the encapsulated p53/C‐rNC complex into the cytoplasm. The cytoplasmic reduction causes degradation of C‐rNC with release of CytoC that induces tumor cell apoptosis. The p53 DNA is transported into the nucleus by the aid of the cationic protamine and thus generates expression of the p53 protein that enhances apoptosis combined with CytoC. p53/C‐rNC/L‐FA is demonstrated to significantly induce tumor cell apoptosis and inhibit tumor growth in the orthotopic breast tumor mouse model.  相似文献   

3.
Inspired by biological systems, many biomimetic methods suggest fabrication of functional materials with unique physicochemical properties. Such methods frequently generate organic–inorganic composites that feature highly ordered hierarchical structures with intriguing properties, distinct from their individual components. A striking example is that of DNA–inorganic hybrid micro/nanostructures, fabricated by the rolling circle technique. Here, a novel concept for the encapsulation of bioactive proteins in DNA flowers (DNF) while maintaining the activity of protein payloads is reported. A wide range of proteins, including enzymes, can be simultaneously associated with the growing DNA strands and Mg2PPi crystals during the rolling circle process, ultimately leading to the direct immobilization of proteins into DNF. The unique porous structure of this construct, along with the abundance of Mg ions and DNA molecules present, provides many interaction sites for proteins, enabling high loading efficiency and enhanced stability. Further, as a proof of concept, it is demonstrated that the DNF can deliver payloads of cytotoxic protein (i.e., RNase A) to the cells without a loss in its biological function and structural integrity, resulting in highly increased cell death compared to the free protein.  相似文献   

4.
5.
6.
7.
A novel pH‐ and redox‐ dual‐responsive tumor‐triggered targeting mesoporous silica nanoparticle (TTTMSN) is designed as a drug carrier. The peptide RGDFFFFC is anchored on the surface of mesoporous silica nanoparticles via disulfide bonds, which are redox‐responsive, as a gatekeeper as well as a tumor‐targeting ligand. PEGylated technology is employed to protect the anchored peptide ligands. The peptide and monomethoxypolyethylene glycol (MPEG) with benzoic‐imine bond, which is pH‐sensitive, are then connected via “click” chemistry to obtain TTTMSN. In vitro cell research demonstrates that the targeting property of TTTMSN is switched off in normal tissues with neutral pH condition, and switched on in tumor tissues with acidic pH condition after removing the MPEG segment by hydrolysis of benzoic‐imine bond under acidic conditions. After deshielding of the MPEG segment, the drug‐loaded nanoparticles are easily taken up by tumor cells due to the exposed peptide targeting ligand, and subsequently the redox signal glutathione in tumor cells induces rapid drug release intracellularly after the cleavage of disulfide bond. This novel intelligent TTTMSN drug delivery system has great potential for cancer therapy.  相似文献   

8.
9.
10.
11.
12.
13.
14.
15.
One of the main problems in cancer treatment is disease relapse through metastatic colonization, which is caused by circulating tumor cells (CTCs). This work reports on liposome‐loaded microbubbles targeted to N‐cadherin, a cell–cell adhesion molecule expressed by CTCs. It is shown that such microbubbles can indeed bind to N‐cadherin at the surface of HMB2 cells. Interestingly, in a mixture of cells with and without N‐cadherin expression, binding of the liposome‐loaded microbubbles mainly occurs to the N‐cadherin‐expressing cells. Importantly, applying ultrasound results in the intracellular delivery of a model drug (loaded in the liposomes) in the N‐cadherin‐expressing cells only. As described in this paper, such liposome‐loaded microbubbles may find application as theranostics and in devices aimed for the specific killing of CTCs in blood.  相似文献   

16.
Identifying and separating a subpopulation of cells from a heterogeneous mixture are essential elements of biological research. Current approaches require detailed knowledge of unique cell surface properties of the target cell population. A method is described that exploits size differences of cells to facilitate selective intracellular delivery using a high throughput microfluidic device. Cells traversing a constriction within this device undergo a transient disruption of the cell membrane that allows for cytoplasmic delivery of cargo. Unique constriction widths allow for optimization of delivery to cells of different sizes. For example, a 4 μm wide constriction is effective for delivery of cargo to primary human T‐cells that have an average diameter of 6.7 μm. In contrast, a 6 or 7 μm wide constriction is best for large pancreatic cancer cell lines BxPc3 (10.8 μm) and PANC‐1 (12.3 μm). These small differences in cell diameter are sufficient to allow for selective delivery of cargo to pancreatic cancer cells within a heterogeneous mixture containing T‐cells. The application of this approach is demonstrated by selectively delivering dextran‐conjugated fluorophores to circulating tumor cells in patient blood allowing for their subsequent isolation and genomic characterization.  相似文献   

17.
Efficient and safe delivery systems for siRNA therapeutics remain a challenge. Elevated secreted protein, acidic, and rich in cysteine (SPARC) protein expression is associated with tissue scarring and fibrosis. Here we investigate the feasibility of encapsulating SPARC‐siRNA in the bilayers of layer‐by‐layer (LbL) nanoparticles (NPs) with poly(L‐arginine) (ARG) and dextran (DXS) as polyelectrolytes. Cellular binding and uptake of LbL NPs as well as siRNA delivery were studied in FibroGRO cells. siGLO‐siRNA and SPARC‐siRNA were efficiently coated onto hydroxyapatite nanoparticles. The multilayered NPs were characterized with regard to particle size, zeta potential and surface morphology using dynamic light scattering and transmission electron microscopy. The SPARC‐gene silencing and mRNA levels were analyzed using ChemiDOC western blot technique and RT‐PCR. The multilayer SPARC‐siRNA incorporated nanoparticles are about 200 nm in diameter and are efficiently internalized into FibroGRO cells. Their intracellular fate was also followed by tagging with suitable reporter siRNA as well as with lysotracker dye; confocal microscopy clearly indicates endosomal escape of the particles. Significant (60%) SPARC‐gene knock down was achieved by using 0.4 pmole siRNA/μg of LbL NPs in FibroGRO cells and the relative expression of SPARC mRNA reduced significantly (60%) against untreated cells. The cytotoxicity as evaluated by xCelligence real‐time cell proliferation and MTT cell assay, indicated that the SPARC‐siRNA‐loaded LbL NPs are non‐toxic. In conclusion, the LbL NP system described provides a promising, safe and efficient delivery platform as a non‐viral vector for siRNA delivery that uses biopolymers to enhance the gene knock down efficiency for the development of siRNA therapeutics.  相似文献   

18.
Because nanoparticles are finding uses in myriad biomedical applications, including the delivery of nucleic acids, a detailed knowledge of their interaction with the biological system is of utmost importance. Here the size‐dependent uptake of gold nanoparticles (AuNPs) (20, 30, 50 and 80 nm), coated with a layer‐by‐layer approach with nucleic acid and poly(ethylene imine) (PEI), into a variety of mammalian cell lines is studied. In contrast to other studies, the optimal particle diameter for cellular uptake is determined but also the number of therapeutic cargo molecules per cell. It is found that 20 nm AuNPs, with diameters of about 32 nm after the coating process and about 88 nm including the protein corona after incubation in cell culture medium, yield the highest number of nanoparticles and therapeutic DNA molecules per cell. Interestingly, PEI, which is known for its toxicity, can be applied at significantly higher concentrations than its IC50 value, most likely because it is tightly bound to the AuNP surface and/or covered by a protein corona. These results are important for the future design of nanomaterials for the delivery of nucleic acids in two ways. They demonstrate that changes in the nanoparticle size can lead to significant differences in the number of therapeutic molecules delivered per cell, and they reveal that the toxicity of polyelectrolytes can be modulated by an appropriate binding to the nanoparticle surface.  相似文献   

19.
20.
Tumor‐responsive nanocarriers are highly valuable and demanded for smart drug delivery particularly in the field of photodynamic therapy (PDT), where a quick release of photosensitizers in tumors is preferred. Herein, it is demonstrated that protein‐based nanospheres, prepared by the electrostatic assembly of proteins and polypeptides with intermolecular disulfide cross‐linking and surface polyethylene glycol coupling, can be used as versatile tumor‐responsive drug delivery vehicles for effective PDT. These nanospheres are capable of encapsulation of various photosensitizers including Chlorin e6 (Ce6), protoporphyrin IX, and verteporfin. The Chlorin e6‐encapsulated nanospheres (Ce6‐Ns) are responsive to changes in pH, redox potential, and proteinase concentration, resulting in multitriggered rapid release of Ce6 in an environment mimicking tumor tissues. In vivo fluorescence imaging results indicate that Ce6‐Ns selectively accumulate near tumors and the quick release of Ce6 from Ce6‐Ns can be triggered by tumors. In tumors the fluorescence of released Ce6 from Ce6‐Ns is observed at 0.5 h postinjection, while in normal tissues the fluorescence appeared at 12 h postinjection. Tumor ablation is demonstrated by in vivo PDT using Ce6‐Ns and the biocompatibility of Ce6‐Ns is evident from the histopathology imaging, confirming the enhanced in vivo PDT efficacy and the biocompatibility of the assembled drug delivery vehicles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号