首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Regio‐ and stereoselective reductions of α‐substituted 1,3‐diketones to the corresponding β‐keto alcohols or 1,3‐diols by using commercially available ketoreductases (KREDs) are described. A number of α‐monoalkyl‐ or dialkyl‐substituted symmetrical as well as non‐symmetrical diketones were reduced in high optical purities and chemical yields, in one or two enzymatic reduction steps. In most cases, two or even three out of the four possible diastereomers of α‐alkyl‐β‐keto alcohols were synthesized by using different enzymes, and in two examples both ketones were reduced to the 1,3‐diol. By replacing the α‐alkyl substituent with the OAc group, 1‐keto‐2,3‐diols, as well as 1,2,3‐triols were synthesized in high optical purities. These enzymatic reactions provide a simple, highly stereoselective and quantitative method for the synthesis of different diastereomers of valuable chiral synthons from non‐chiral, easily accessible 1,3‐diketones.  相似文献   

2.
Glycosynthases—retaining glycosidases mutated at their catalytic nucleophile—catalyze the formation of glycosidic bonds from glycosyl fluorides as donor sugars and various glycosides as acceptor sugars. Here the first glycosynthase derived from a family 35 β‐galactosidase is described. The Glu→Gly mutant of BgaC from Bacillus circulans (BgaC‐E233G) catalyzed regioselective galactosylation at the 3‐position of the sugar acceptors with α‐galactosyl fluoride as the donor. Transfer to 4‐nitophenyl α‐D ‐N‐acetyl‐glucosaminide and α‐D ‐N‐acetylgalactosaminide yielded 4‐nitophenyl α‐lacto‐N‐biose and α‐galacto‐N‐biose, respectively, in high yields (up to 98 %). Kinetic analysis revealed that the high affinity of the acceptors contributed mostly to the BgaC‐E233G‐catalyzed transglycosylation. BgaC‐E233G showed no activity with β‐(1,3)‐linked disaccharides as acceptors, thus suggesting that this enzyme can be used in “one‐pot synthesis” of LNB‐ or GNB‐containing glycans.  相似文献   

3.
The effect of α‐ and β‐nucleating agents (NA) of various amounts on the fracture behavior of polypropylene‐co‐ethylene (CPP) was evaluated using the essential work of fracture (EWF) method. The specific EWF values of CPPs incorporated with α‐NA of different amount were all lower than that of pure CPP, while the specific nonessential work of fracture was the highest at relative low α‐NA loading (0.1 wt %), and then decreased with further increasing amount of α‐NA. Similar trend of variation was observed with increasing amount of β‐NA in CPP, and it was found that the variation of Kβ for β‐NA nucleated CPP versus NA content accorded well with the EWF versus NA content, which indicated that the addition of β‐NA could lead to effectively increased β‐crystal content and consequently improved fracture resistance of CPP. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

4.
The tris(acetylacetonato)rhodium(III) catalyst is shown to be a versatile catalyst in the presence of DABCO (1,4‐diazabicyclo[2.2.2]octane) as ligand for the α‐alkylation of ketones followed by transfer hydrogenation, for the one‐pot β‐alkylation of secondary alcohols with primary alcohols and for the alkylation of aromatic amines in the presence of an inorganic base in toluene.  相似文献   

5.
The natural antibacterial agent allyl isothiocyanate (AITC) encapsulated in either α‐ or β‐cyclodextrin (CD) has previously been evaluated as a slow‐release additive in polylactide‐co‐polycaprolactone (PLA–PCL) films designed for use in cheese packaging. In the research described in this article, thermogravimetric analysis (TGA) and thermogravimetric analysis in tandem with mass spectrometry (TGA–MS) were used to explore the thermal properties of CD‐encapsulated AITC complexes as well as those of PLA–PCL films containing these complexes. To our knowledge, this is the first reported application of the TGA–MS technique to explore the thermal stability of CD‐entrapped AITC and the first study to report differences in thermal stability of AITC in α‐and β‐CD cavities in the solid state. Observed differences in the thermal degradation profile of films containing the CD complexes can be explained if AITC binds more strongly to β‐CD than to α‐CD. This hypothesis has been reinforced by gas chromatography (GC) and high performance liquid chromatography (HPLC) studies, the results of which suggest that a new covalently bound AITC–CD complex may be formed when incorporating the β‐CD complex of AITC in PLA–PCL films but not when incorporating the α‐CD complex of AITC. This finding means that the α‐CD complex of AITC would be preferred in situations where adequate long‐term controlled release of AITC from polymer films is required, as for example in the case of active packaging applications. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

6.
Novel solid fluorides were prepared to optimize the β‐azidation of α,β‐unsaturated ketones. The higher loading of these catalysts compared to that of commercially available fluorides has allowed the use of a smaller mass of catalyst helping the mixing of the reaction mixture. Porous polymeric supports have proved to be more efficient in the presence of water as reaction medium. Water has played a crucial role showing a beneficial effect on the reactivity by improving dispersion of the reaction mixture and also by avoiding organic fouling caused by the retention of the reaction mixture within the polymeric matrix. This has facilitated the recovery of the products from the catalyst. The protocol reported has allowed a significant reduction in the organic solvent required for the complete recovery of the pure product whilst leaving the catalyst clean and reusable. E‐factors are in the range of 5.9–10.5 and therefore ca. 3 times smaller than previous procedures operating under solvent‐free conditions. To further improve the efficiency of our approach we have developed a protocol operating in a continuous‐flow manner that has allowed us to achieve an E‐factor of 1.7–1.9, with a reduction of ca. 80% of the corresponding batch conditions. The continuous‐flow protocol has allowed us to minimize the use of trimethylsilyl azide making the recovery and reuse of water and catalyst 5f very efficient and simple. Finally, a novel reduction system using palladium on alumina (5 mol%) and equimolar amount of formic acid has been used in the presence of 1 equivalent of di‐tert‐butyl pyrocarbonate to set a multistep protocol operating in continuous‐flow conditions for the preparation of two representative N‐Boc‐β‐amino ketones starting from the corresponding enones with E‐factors of 3.2 and 2.7, respectively.  相似文献   

7.
Prochiral bicyclic diketones were transformed to a single diastereomer of 3‐substituted cyclohexylamine derivatives via three consecutive biocatalytic steps. The two chiral centres were set up by a C C hydrolase (6‐oxocamphor hydrolase) in the first step and by an ω‐transaminase in the last step. The esterification of the intermediate keto acid was catalysed by a lipase in the second step if possible. For two substrates the C C hydrolytic step as well as the esterification could be run simultaneously in a one‐pot cascade in an organic solvent. In one example, the reaction mixture of the first two steps could be directly subjected to bio‐amination in an organic solvent without the need to change the reaction medium. Depending on the choice of the ω‐transaminase employed and the substrate the cis‐ as well as the trans‐diastereomers could be obtained in optically pure forms.  相似文献   

8.
A new enantioselective α‐alkylation of α‐tert‐butoxycarbonyllactams for the construction of β‐quaternary chiral pyrrolidine and piperidine core systems is reported. α‐Alkylations of N‐methyl‐α‐tert‐butoxycarbonylbutyrolactam and N‐diphenylmethyl‐α‐tert‐butoxycarbonylvalerolactam under phase‐transfer catalytic conditions (solid potassium hydroxide, toluene, −40 °C) in the presence of (S,S)‐3,4,5‐trifluorophenyl‐3,3′,5,5′‐tetrahydro‐2,6‐bis(3,4,5‐trifluorophenyl)‐4,4′‐spirobi[4H‐dinaphth[2,1‐c:1′,2′‐e]azepinium] bromide [(S,S)‐NAS Br] (5 mol%) afforded the corresponding α‐alkyl‐α‐tert‐butoxycarbonyllactams in very high chemical (up to 99%) and optical yields (up to 98% ee). Our new catalytic systems provide attractive synthetic methods for pyrrolidine‐ and piperidine‐based alkaloids and chiral intermediates with β‐quaternary carbon centers.  相似文献   

9.
The reaction of β‐nitroacrylates with pyrroles, under solvent‐ and catalyst‐free conditions, allows the formation of Friedel–Crafts adducts which, after in situ treatment with Amberlyst 15 in isopropyl alcohol under reflux, provide polysubstituted indoles, via a benzannulation reaction, in a one‐pot process.  相似文献   

10.
This update describes a highly efficient organocatalytic aldol reaction of ketones and β,γ‐unsaturated α‐keto esters for constructing the chiral tertiary alcohol motif. With the application of 9‐amino(9‐deoxy)epi‐Cinchona alkaloid and an acidic additive as catalysts, both acyclic and cyclic ketones react with β,γ‐unsaturated α‐keto esters smoothly to afford aldol adducts in good to excellent yields and asymmetric induction. This protocol offers a new pathway for the construction of adjacent chiral carbon centers and the synthesis of chiral β‐hydroxy carbonyl compounds.  相似文献   

11.
The two‐phase hydroformylation of higher olefins with the rhodium/trisulfonated triphenylphosphine catalytic system in the presence of various chemically modified α‐cyclodextrins has been investigated. These cyclodextrins allowed us to increase greatly the reaction rate and the chemoselectivity of the reaction but, contrary to what has been observed previously with the chemically modified β‐cyclodextrins, the linear to branched aldehydes ratio was not affected by the presence of α‐cyclodextrin derivatives. Indeed, the latter was found to be similar to that obtained without any mass transfer promoter, suggesting that the catalytic species are stable in the presence of α‐cyclodextrin derivatives.  相似文献   

12.
The stabilization of β‐cyclodextrin (β‐CD) on spacer polyester fabric (three‐dimensional) is an interesting task. Using a crosslinking agent to stabilize β‐CD on the spacer polyester fabric is necessary. This causes an increase in the durability of β‐CD on the fabric. In this research, five different crosslinking agents, including two non‐formaldehyde crosslinking agents (citric acid and 1,2,3,4‐butane tetracarboxylic acid), one formaldehyde‐based crosslinking agent (dimethylol dihydroxyl ethylene urea), and two different commercial siloxane‐based softeners, were used to specify the best yield on the polyester spacer fabric with β‐CD. The results showed that, among the different crosslinking agents, 1,2,3,4‐butane tetracarboxylic acid provided the best durability after 10 washings. The changes in the weight, regain, drop absorption time on the fabric surface, metal‐ion (chrome) absorption, and reactive‐dye absorption were also reported, and scanning electron microscopy pictures were observed. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

13.
The highly catalytic asymmetric α‐hydroxylation of 1‐tetralone‐derived β‐keto esters and β‐keto amides using tert‐butyl hydroperoxide (TBHP) as the oxidant was realized by a chiral N,N′‐dioxide‐magnesium ditriflate [Mg(OTf)2] complex. A series of corresponding chiral α‐hydroxy dicarbonyl compounds was obtained in excellent yields (up to 99%) with excellent enantioselectivities (up to 98% ee). The products were easily transformed into useful building blocks and the precursor of daunomycin was achieved in an asymmetric catalytic way for the first time.  相似文献   

14.
An efficient and divergent one‐pot synthesis of substituted 2H‐pyrans, 4H‐pyrans and pyridin‐2(1H)‐ones from β‐oxo amides based on the selection of the reaction conditions is reported. Mediated by N,N,N′,N′‐tetramethylchloroformamidinium chloride, β‐oxo amides underwent intermolecular cyclizations in the presence of triethylamine at room temperature to give substituted 2H‐pyrans in high yields, which could be converted into substituted 4H‐pyrans in the presence of sodium hydroxide in ethanol at room temperature, or into substituted pyridin‐2(1 H)‐ones under reflux.  相似文献   

15.
Various (R)‐ and (S)‐C‐allylglycine derivatives were synthesized by means of an auxiliary controlled diastereoselective aza‐Claisen rearrangement. Starting from (S)‐configured auxiliaries derived from optically active proline, an aza‐Claisen rearrangement enabled us to synthesize α(R)‐configured γ,δ‐unsaturated amides. Since (R)‐allylglycine derivatives could be directly generated by reacting N‐allylproline derivatives and various protected glycine fluorides, the corresponding (S)‐enantiomers were built‐up via an initial α‐chloroacetyl chloride rearrangement and a subsequent chloride azide substitution with complete inversion of the configuration. High diastereoselectivities were obtained (>15 : 1). The auxiliary could be efficiently removed by organolithium reactions of the amides furnishing α‐amino ketones. Another allyllithium addition allowed us to introduce a second allyl chain with high diastereoselectivity. Final ring closures by means of metatheses using Grubbs' (I) catalyst gave raise to the formation of enantiopure phenanthridines and cyclohexenes displaying defined substitution patterns ready for alkaloid total syntheses.  相似文献   

16.
N‐Acylethanolamine acid amidase (NAAA) is a cysteine amidase that preferentially hydrolyzes saturated or monounsaturated fatty acid ethanolamides (FAEs), such as palmitoylethanolamide (PEA) and oleoylethanolamide (OEA), which are endogenous agonists of nuclear peroxisome proliferator‐activated receptor‐α (PPAR‐α). Compounds that feature an α‐amino‐β‐lactone ring have been identified as potent and selective NAAA inhibitors and have been shown to exert marked anti‐inflammatory effects that are mediated through FAE‐dependent activation of PPAR‐α. We synthesized and tested a series of racemic, diastereomerically pure β‐substituted α‐amino‐β‐lactones, as either carbamate or amide derivatives, investigating the structure–activity and structure–stability relationships (SAR and SSR) following changes in β‐substituent size, relative stereochemistry at the α‐ and β‐positions, and α‐amino functionality. Substituted carbamate derivatives emerged as more active and stable than amide analogues, with the cis configuration being generally preferred for stability. Increased steric bulk at the β‐position negatively affected NAAA inhibitory potency, while improving both chemical and plasma stability.  相似文献   

17.
The highly catalytic asymmetric α‐hydroxylation of β‐indanone esters and β‐indanone amides using peroxide as the oxidant was realized with a new C‐2′ substituted Cinchona alkaloid derivatives. The two enantiomers of α‐hydroxy‐β‐indanone esters could be obtained by simply changing the oxidant. This protocol allows a convenient access to the corresponding α‐hydroxy‐β‐indanone esters and α‐hydroxy‐β‐indanone amides with up to 99% yield and 98% ee.

  相似文献   


18.
The phenylalanine aminomutase (PAM) from Taxus chinensis catalyses the conversion of α‐phenylalanine to β‐phenylalanine, an important step in the biosynthesis of the N‐benzoyl phenylisoserinoyl side‐chain of the anticancer drug taxol. Mechanistic studies on PAM have suggested that (E)‐cinnamic acid is an intermediate in the mutase reaction and that it can be released from the enzyme's active site. Here we describe a novel synthetic strategy that is based on the finding that ring‐substituted (E)‐cinnamic acids can serve as a substrate in PAM‐catalysed ammonia addition reactions for the biocatalytic production of several important β‐amino acids. The enzyme has a broad substrate range and a high enantioselectivity with cinnamic acid derivatives; this allows the synthesis of several non‐natural aromatic α‐ and β‐amino acids in excellent enantiomeric excess (ee >99 %). The internal 5‐methylene‐3,5‐dihydroimidazol‐4‐one (MIO) cofactor is essential for the PAM‐catalysed amination reactions. The regioselectivity of amination reactions was influenced by the nature of the ring substituent.  相似文献   

19.
β‐Aminopeptidases have exclusive biocatalytic potential because they react with peptides composed of β‐amino acids, which serve as building blocks for the design of non‐natural peptidomimetics. We have identified the β‐lactam antibiotic ampicillin and the ampicillin‐derived penicilloic acid as novel inhibitors of the β‐aminopeptidase BapA from Sphingosinicella xenopeptidilytica (Ki values of 0.69 and 0.74 mM , respectively). We report high‐resolution crystal structures of BapA in noncovalent complexes with these inhibitors and with the serine protease inhibitor 4‐(2‐aminoethyl)benzenesulfonyl fluoride. All three inhibitors showed similar binding characteristics; the aromatic moiety extended into a hydrophobic binding pocket of the active site, and the free amino group formed a salt bridge with Glu133 of BapA. The exact position of the inhibitors and structural details of the ligand binding pocket illustrate the specificity and the enantioselectivity of BapA‐catalyzed reactions with β‐peptide substrates.  相似文献   

20.
The cross‐aldol reaction between enolizable aldehydes and α‐ketophosphonates was achieved for the first time by using 9‐amino‐9‐deoxy‐epi‐quinine as the catalyst. β‐Formyl‐α‐hydroxyphosphonates were obtained in high to excellent enantioselectivities. The reaction works especially well with acetaldehyde, which is a tough substrate for organocatalyzed cross‐aldol reactions. The products were demonstrated to have anticancer activities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号