首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Transmission performances of direct detection‐based 100‐Gb/s modulation formats are investigated and compared for metro area optical networks. The effects of optical signal‐to‐noise ratio sensitivity, chromatic dispersion, cross‐channel nonlinearity, and transmission distance on the performance of differential 8‐ary phase‐shift keying (D8PSK), differential phase‐shift keying plus three‐level amplitude‐shift keying (DPSK+3ASK), and dual‐carrier differential quaternary phase‐shift keying (DC‐DQPSK) are evaluated. The performance of coherent dual‐polarization quadrature phase‐shift keying (DP‐QPSK) with block phase estimation and coherent DP‐QPSK with digital differential detection are also presented for reference. According to our analysis, all three direct detection modulation formats could transmit a 100‐Gb/s signal over several hundred kilometers of a single‐mode fiber link. The results also show that DC‐DQPSK outperforms D8PSK and DPSK+3ASK, and the performance of DC‐DQPSK is comparable to that of coherent DP‐QPSK with digital differential detection. The maximum transmission distance of DC‐DQPSK is over 1,000 km, which is enough distance for metro applications.  相似文献   

2.
This article discusses the various schemes for generating typical advanced modulation formats in terms of configuration and cost, and particularly presents some recently proposed configurations for optical data generation with better performance or reduced components, including pulsed multichannel source generation for return-to-zero (RZ)-based WDM application, multichannel dual-mode pulse source for carrier-suppressed RZ (CSRZ)-based WDM application, CSRZ and CSRZ differential phase shift keyed (DPSK) signal generation using a single Mach-Zehnder modulator (MZM) together with an electrical mixer, chirped RZ generation with reduced modulator number, and RZ/CSRZ-DPSK generation using a single dual-drive MZM and optical minimum shift keying (MSK).  相似文献   

3.
An experimental heterodyne lightwave transmission system operating at 4 Gb/s is described. The optical sources were 1.5-μm-wavelength DFB (distributed feedback) and DBR (distributed Bragg reflector) semiconductor lasers. ASK, FSK, and DPSK modulation formats were investigated; baseline receiver sensitivities of 175, 191, and 209 photons/bit, respectively, were achieved. Transmission experiments through up to 160 km of conventional single-mode fiber and up to 175 km of dispersion-shifted fiber are also reported  相似文献   

4.
Fast optical frequency shift keying or wavelength shift keying (WSK) modulation offers advantageous features for applications in long haul communications and in optical labeling for packet routing. This includes simple demodulation by optical filtering and constant amplitude envelope providing tolerance to fiber nonlinear effects during transmission. In this paper we report on the generation of WSK signals up to 35 Gb/s with reuse of the wavelength tones for polarization multiplexing two independent 40 Gb/s DPSK signals. Transmission over a 50 km fiber link of the resultant three channel signal is also reported.  相似文献   

5.
Three modulation formats are compared by numerical simulation of highly dense (75-GHz-spaced for 40 Gb/s channel), long-haul (600-1800 km) wavelength division multiplexed systems with three fiber types. Nonreturn-to-zero (NRZ) format, being the most spectrally compact and the simplest in transmitter and receiver configuration of the three, seems to be capable enough at shorter transmission distances than 1000 km regardless of fiber type. Carrier-suppressed return-to-zero (RZ) format, being the most tolerant to the self-phase modulation effect, showed better performance with fibers having larger chromatic dispersion. However, its transmission distance with low dispersion fibers is severely limited by the four-wave mixing effect. Bit-synchronous intensity modulated differential phase shift keying (IM-DPSK) format seems to be the best choice for a transmission distance beyond 1000 km because of its superior tolerance to optical noise and fiber nonlinear effects regardless of fiber types, despite slightly more complex transmitter and receiver configurations.  相似文献   

6.
In this paper,we describe the generation,detection,and performance of frequency-shift keying (FSK) for high-speed optical transmission and label switching.A non-return-to-zero (NRZ) FSK signal is generated by using two continuous-wave (CW) lasers,one Mach-Zehnder modulator (MZM),and one Mach-Zehnder delay interferometer (MZDI).An RZ-FSK signal is generated by cascading a dual-arm MZM,which is driven by a sinusoidal voltage at half the bit rate.Demodulation can be achieved on 1 bit rate through one MZDI or an array waveguide grating (AWG) demultiplexer with balanced detection.We perform numerical simulation on two types of frequency modulation schemes using MZM or PM,and we determine the effect of frequency tone spacing (FTS) on the generated FSK signal.In the proposed scheme,a novel frequency modulation format has transmission advantages compared with traditional modulation formats such as RZ and differential phase-shift keying (DPSK),under varying dispersion management.The performance of an RZ-FSK signal in a 4 × 40 Gb/s WDM transmission system is discussed.We experiment on transparent wavelength conversion based on four-wave mixing (FWM) in a semiconductor optical amplifier (SOA) and in a highly nonlinear dispersion shifted fiber (HNDSF) for a 40 Gb/s RZ-FSK signal.The feasibility of all-optical signal processing of a high-speed RZ-FSK signal is confirmed.We also determine the receiver power penalty for the RZ-FSK signal after a 100 km standard single-mode fiber (SMF) transmission link with matching dispersion compensating fiber (DCF),under the post-compensation management scheme.Because the frequency modulation format is orthogonal to intensity modulation and vector modulation (polarization shift keying),it can be used in the context of the combined modulation format to decrease the data rate or enhance the symbol rate.It can also be used in orthogonal label-switching as the modulation format for the payload or the label.As an example,we propose a simple orthogonal optical label switching technique based on 40 Gb/s FSK payload and 2.5 Gb/s intensity modulated (IM) label.  相似文献   

7.
The influence of laser chirping, fiber chromatic dispersion, and receiver filtering on the shape of the pulses in 11 Gb/s lightwave transmission systems is discussed. Both the NRZ and RZ encoding formats are considered as well as positive and negative dispersion. The results quantify the sensitivity of the system performance to the receiver decision time, the maximum permissible deviation of the laser wavelength from the fiber zero dispersion wavelength, and the improvement in transmission performance offered by pulse compression arising from negative dispersion  相似文献   

8.
We propose maximum-likelihood sequence estimator (MLSE) equalizers based on either Viterbi algorithm or template matching temple matching (TM) for the equalization of impairments imposed on the minimum shift keying (MSK) modulation formats in long haul transmission without optical dispersion compensation. The TM-MLSE equalizer is proposed as a simplified alternative for the Viterbi-MLSE equalizer. It is verified that the Viterbi-MLSE equalizer can operate optimally when noise approaches a Gaussian distribution. Simulation results of the performances of the two MLSE equalizers for optical frequency discrimination receiver-based optical MSK systems are described. The transmission performance is evaluated in terms of: (1) the chromatic dispersion (CD) tolerance for both Viterbi-MLSE and TM-MLSE equalizers; (2) transmission distance limits of Viterbi-MLSE equalizers with various number of states; (3)the robustness to fiber polarization mode dispersion (PMD) of Viterbi-MLSE equalizers; and (4) performance improvements for Viterbi-MLSE equalizers when utilizing sampling schemes with two and four samples per bit over the conventional single sample per bit. With a small number of states (64 states), the non-compensating optical link can equivalently reach up to approximately 928 km SSMF for 10 Gb/s transmission or 58 km SSMF for 40 Gb/s. The performance of 16-state Viterbi-MLSE equalizers for optical frequency discrimination receiver (OFDR)-based optical MSK transmission systems for PMD mitigation is also numerically investigated. The performance of Viterbi-MLSE equalizers can be further improved by using the sampling schemes with multiple samples per bit compared to the conventional single sample bit. The equalizer also offers high robustness to fiber PMD impairment.  相似文献   

9.
This paper proposes a novel duobinary-mode-splitting scheme that uses wideband phase-shift-keying (PSK)/amplitude-shift-keying (ASK) conversion for modulation and detection of bandwidth-reduced return-to-zero (RZ) modulation formats. We have first demonstrated that the proposed scheme greatly simplifies the modulation process of the duobinary carrier-suppressed RZ format (DCS-RZ) based on baseband binary nonreturn-to-zero (NRZ) modulation. We also proposed carrier-suppressed RZ differential-phase-shift-keying format (CS-RZ DPSK) as a novel bandwidth-reduced RZ format by applying the proposed scheme in the detection process. These novel RZ formats are shown to be very useful for dense wavelength-division multiplexed (DWDM) transport systems using high-speed channels, over 40 Gb/s, with spectrum efficiencies higher than 0.4 b/s/Hz. We demonstrate that the proposed modulation and detection scheme greatly simplifies the DWDM transmitter and receiver configuration if the periodicity of the optical PSK/ASK conversion filter equals the WDM channel spacing. The large tolerance of the formats against several fiber nonlinearities and their wide dispersion tolerance characteristics are tested at the channel rate of 43 Gb/s with 100-GHz spacing. The novel CS-RZ DPSK format offers higher nonlinearity tolerance against cross-phase modulation than does the DCS-RZ format.  相似文献   

10.
We demonstrate, by partial experiment and simulation, a re-modulation scheme of the lightwave carrier imbedded in a downstream optical signals under differential quadrature phase shift keying (DQPSK) modulation format for upstream transmission over passive optical networks (PONs) at a bit rate of 100 Gb/s. The recovery of the optical carrier with the precise wavelength is implemented using an injection laser incorporating an optical phase locked loop (OPLL). In the computer simulation, the OPLL is implemented by a Simulink model consisting of interconnected system blocks following exactly the physical phenomena of the hardware structures. This model is then integrated with DQPSK modulation formats for up- and down-transmissions in PONs. Pulse shaping of Non-Return-to-Zero and Return-to-Zero (RZ) of 50% duty cycle and 67% duty cycle are used, respectively. Dispersion tolerance of 25 ps/nm with a bit error rate (BER) of 10−9 is achieved for both down- and upstream transmissions over fully dispersion compensated 80- km standard SMF and 1.5- km SSMF equivalent dispersion with carrier suppressed RZ pulse shaping (CS-RZ 67%). The contribution to BER by the timing synchronization error at the sampling of the optical network unit for re-modulation and related power penalty of these modulation formats is also investigated. It is noted that using the optical phase locking technique it is possible to remove any cross talks which may be generated from nonlinear effects such as cross-phase modulation, self-phase modulation, and four wave mixing.  相似文献   

11.
Increased interest in novel modulation formats for optical transmission has come up in recent years. Receivers with interferometric direct detection can be used to detect arbitrary modulation formats with differentially encoded phases as differential phase-shift keying (DPSK) and differentially phase-encoded star-shaped quadrature amplitude modulation (Star QAM). In this paper, two novel 16-ary modulation formats, which are the 16 DPSK and the Star 16 QAM (ASK-8 DPSK), are characterized for optical transmission for the first time. To be able to identify clear performance tendencies for high-order optical modulation, the novel formats are compared to a wide range of already investigated formats by conducting comprehensive calculations in a uniform simulation environment. The influence of different transmitter structures and decision schemes is considered, and all the systems are characterized with respect to the optical signal-to-noise ratio requirements, dispersion tolerance, and self-phase-modulation (SPM) performance for nonreturn-to-zero (NRZ) and RZ pulse shapes. Moreover, an inherent problem of Star QAM transmission concerning SPM is illustrated, and compensation techniques are examined. The results give a substantial insight into the properties of high-order optical modulation formats.  相似文献   

12.
A comparison is presented of the performance of amplitude-shift-keying (ASK), frequency-shift keying (FSK), and differential-phase-shift-keying (DPSK) lightwave systems which operate at 10 Gb/s with directly modulated 1550-nm distributed feedback (DFB) laser transmitters and conventional 1310-nm dispersion-optimized fiber. Computer modeling techniques were used to accurately simulate the amplitude modulation response and the frequency modulation response of DBF lasers. The system performance is evaluated from simulated eye patterns for both direct and heterodyne detection. With the narrow-optical spectral widths of these signal formats, fiber chromatic dispersion limits up to 70 km were obtained for transmission at 1550-nm using conventional 1310-nm optimized fiber  相似文献   

13.
14.
We investigate equalizers for electronic dispersion compensation (EDC) of dispersion limited optical fibre communication links in combination with different modulation formats. We show that the performance of conventional equalizers including feedforward equalizer (FFE) and decision feedback equalizer (DFE) are fundamentally limited by the nonlinearity of square-law detection of the photodiode in direct detection systems. Advanced modulation formats such as differential phase shift keying (DPSK) and optical duobinary further enhance this kind of nonlinearity and degrade further FFE/DFE performance. However, nonlinear FFE–DFE and maximum likelihood sequence estimation (MLSE) take into account the mitigation of nonlinear inter symbol interference (ISI) and hence can achieve much better performance. We show that in contrast to other modulation formats, optical single sideband modulation results in approximately linear distortions after detection and thus a simple linear FFE equalizer can achieve good compensation.  相似文献   

15.
申静  李俊奇 《激光技术》2019,43(5):641-645
为了研究光差分相移键控(DPSK)调制格式在光纤高速传输系统中的色散补偿, 利用色散补偿光纤(DCF)的色散补偿原理, 对40Gbit/s光纤传输系统进行色散补偿, 分析了40Gbit/s单通道光纤传输系统中3种DPSK调制格式信号的频谱特性; 仿真了3种码型的色散容忍度以及3种调制格式在考虑光纤的非线性下的色散补偿方案。结果表明, 光非归零码差分相移键控(NRZ-DPSK)信号具有最好的色散容忍度, 但其受非线性的影响比较大; 33%归零码差分相移键控(33%RZ-DPSK)信号的色散容忍度差, 但其色散补偿后的效果优于NRZ-DPSK; 而载波抑制归零码差分相移键控信号对色散和非线性效应都有较好的抑制; 3种DPSK调制格式均在对称补偿2方案中色散补偿的效果最佳。此仿真研究对光DPSK信号在光纤中的色散补偿具有参考意义。  相似文献   

16.
Orthogonal amplitude shift keying/differential phase-shift keying (ASK/DPSK) labeling is a promising approach to ultrahigh packet-rate routing and forwarding in the optical layer. However, the limitation on the payload extinction ratio (ER) is a detrimental effect for network scalability and transparency. This paper presents theoretical and experimental studies of ASK/DPSK labeling. It proposes that dc-balanced 8B10B coding can greatly improve ER tolerance, which in turn leads to better system performance. By using the 8B10B coding method, the paper demonstrates transmission and optical label swapping for a 40 Gb/s ASK payload and a 2.5 Gb/s DPSK label with an overall power penalty of 3.3 dB for the payload and 0.3 dB for the label. The experimental results also show that the ER is allowed to be as high as 12 dB.  相似文献   

17.
Reduction of DWDM nonlinear fiber penalties by the use of DPSK modulation and an optically preamplified self-homodyning receiver is discussed. Maintaining a constant instantaneous channel power by phase shift keying, we can anticipate reduction of cross-phase modulation penalties. Our modeling results show 0.9-dB benefit in Q performance for 50-GHz spaced, 32×10 Gb/s transmissions with nonzero dispersion shifted fiber  相似文献   

18.
Record repeaterless transmission of differential phase-shift keying (DPSK) at 10.7 Gb/s over 304 km of standard single-mode fiber (SSMF) is demonstrated using a coherent optical receiver and electronic dispersion compensation. This is the longest repeaterless 10-Gb/s transmission over SSMF in the absence of Raman amplifiers. The high receiver sensitivity and the high tolerance to nonlinearities of DPSK allow us to overcome a total link loss of 58 dB with a 3-dB system margin. Coherent detection enables linear electrical dispersion compensation and avoids the use of optical dispersion compensation.  相似文献   

19.
We have investigated the wavelength conversion techniques for differential phase-shift keying (DPSK) modulation formats in 10 Gb/s transmission systems, compared with the non-return-to-zero (NRZ) modulation format. For the wavelength conversion of DPSK modulation formats, we employed the wavelength converters based on the four-wave mixing (FWM) in semiconductor optical amplifiers (SOAs) and the frequency comb generated by phase modulation. The power penalty at 10/sup -9/ bit error rate was used as a measure of the system performance degraded by the wavelength conversion. Our simulation results show that the DPSK modulation formats have a smaller power penalty than the NRZ modulation format for the wavelength conversion using the FWM effect in an SOA due to a much lower pattern effect. However, as the wavelength conversion uses the frequency comb generated by phase modulation, it has a similar power penalty compared with the NRZ modulation format. It is also shown that the DPSK modulation formats are possible to obtain the power penalty less than 0.4 dB for both wavelength conversion techniques.  相似文献   

20.
To provide higher capacity networks, 40-Gb/s transmission systems are under active development and their cost is on the way to be competitive with the one of 410 Gb/s. However, their lower tolerance to linear and nonlinear fiber impairments remains a major drawback for field deployment. To address the issue of linear impairments, coherent detection of multilevel formats with polarization division multiplexing appears as a promising solution by reducing the symbol rate to 10 Gbaud. Indeed, such coherent based systems have already demonstrated an improved tolerance to optical noise and an interesting capability to compensate for large amount of chromatic dispersion. In this paper, the tolerances to narrow optical filtering, chromatic dispersion, and polarization mode dispersion are investigated with coherent detection of 10-Gbaud quadrature phase shift keying (QPSK) with and without polarization division multiplexing. Moreover, the efficient mitigation of these linear impairments by digital processing in a coherent receiver is demonstrated in an ultralong haul transmission (4080 km) of 40-Gb/s QPSK polarization multiplexed data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号