首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Zhong-Zhi Bai 《Computing》2010,89(3-4):171-197
For the singular, non-Hermitian, and positive semidefinite systems of linear equations, we derive necessary and sufficient conditions for guaranteeing the semi-convergence of the Hermitian and skew-Hermitian splitting (HSS) iteration methods. We then investigate the semi-convergence factor and estimate its upper bound for the HSS iteration method. If the semi-convergence condition is satisfied, it is shown that the semi-convergence rate is the same as that of the HSS iteration method applied to a linear system with the coefficient matrix equal to the compression of the original matrix on the range space of its Hermitian part, that is, the matrix obtained from the original matrix by restricting the domain and projecting the range space to the range space of the Hermitian part. In particular, an upper bound is obtained in terms of the largest and the smallest nonzero eigenvalues of the Hermitian part of the coefficient matrix. In addition, applications of the HSS iteration method as a preconditioner for Krylov subspace methods such as GMRES are investigated in detail, and several examples are used to illustrate the theoretical results and examine the numerical effectiveness of the HSS iteration method served either as a preconditioner for GMRES or as a solver.  相似文献   

2.
One of the main concepts in quantum physics is a density matrix, which is a symmetric positive definite matrix of trace one. Finite probability distributions can be seen as a special case when the density matrix is restricted to be diagonal. We develop a probability calculus based on these more general distributions that includes definitions of joints, conditionals and formulas that relate these, including analogs of the Theorem of Total Probability and various Bayes rules for the calculation of posterior density matrices. The resulting calculus parallels the familiar “conventional” probability calculus and always retains the latter as a special case when all matrices are diagonal. We motivate both the conventional and the generalized Bayes rule with a minimum relative entropy principle, where the Kullbach-Leibler version gives the conventional Bayes rule and Umegaki’s quantum relative entropy the new Bayes rule for density matrices. Whereas the conventional Bayesian methods maintain uncertainty about which model has the highest data likelihood, the generalization maintains uncertainty about which unit direction has the largest variance. Surprisingly the bounds also generalize: as in the conventional setting we upper bound the negative log likelihood of the data by the negative log likelihood of the MAP estimator.  相似文献   

3.
We present a family of eigenvalue inequalities for the product of a Hermitian matrix and a positive–semidefinite matrix. Our theorem contains or extends some existing results on trace and eigenvalues.  相似文献   

4.
Support vector machine (SVM) is a well sound learning method and a robust classification procedure. Choosing a suitable kernel function in SVM is crucial for obtaining good performance; the difficulty is how to choose a suitable data transformation for the given problem. To this end, multiple kernel matrices, each of them corresponding to a given similarity measure, can be linearly combined. In this paper, the optimal kernel matrix, obtained as linear combination of known kernel matrices, is generated using a semidefinite programming approach. A suitable model formulation assures that the obtained kernel matrix is positive semidefinite and is optimal with respect to the dataset under consideration. The proposed approach has been applied to some very important medical diagnostic decision making problems and the results obtained by carrying out preliminary numerical experiments demonstrated the effectiveness of the proposed solution approach.  相似文献   

5.
Algorithms are presented for evaluating gradients and Hessians of logarithmic barrier functions for two types of convex cones: the cone of positive semidefinite matrices with a given sparsity pattern and its dual cone, the cone of sparse matrices with the same pattern that have a positive semidefinite completion. Efficient large-scale algorithms for evaluating these barriers and their derivatives are important in interior-point methods for nonsymmetric conic formulations of sparse semidefinite programs. The algorithms are based on the multifrontal method for sparse Cholesky factorization.  相似文献   

6.
7.
Representing graphs as quantum states is becoming an increasingly important approach to study entanglement of mixed states, alternate to the standard linear algebraic density matrix-based approach of study. In this paper, we propose a general weighted directed graph framework for investigating properties of a large class of quantum states which are defined by three types of Laplacian matrices associated with such graphs. We generalize the standard framework of defining density matrices from simple connected graphs to density matrices using both combinatorial and signless Laplacian matrices associated with weighted directed graphs with complex edge weights and with/without self-loops. We also introduce a new notion of Laplacian matrix, which we call signed Laplacian matrix associated with such graphs. We produce necessary and/or sufficient conditions for such graphs to correspond to pure and mixed quantum states. Using these criteria, we finally determine the graphs whose corresponding density matrices represent entangled pure states which are well known and important for quantum computation applications. We observe that all these entangled pure states share a common combinatorial structure.  相似文献   

8.
Quaternionic least squares (QLS) is an efficient method for solving approximate problems in quaternionic quantum theory. In view of the extensive applications of Hermitian tridiagonal matrices in physics, in this paper we list some properties of basis matrices and subvectors related to tridiagonal matrices, and give an iterative algorithm for finding Hermitian tridiagonal solution with the least norm to the quaternionic least squares problem by making the best use of structure of real representation matrices, we also propose a preconditioning strategy for the Algorithm LSQR-Q in Wang, Wei and Feng (2008) [14] and our algorithm. Numerical experiments are provided to verify the effectiveness of our method.  相似文献   

9.
We consider approximate computation of several minimal eigenpairs of large Hermitian matrices which come from high-dimensional problems. We use the tensor train (TT) format for vectors and matrices to overcome the curse of dimensionality and make storage and computational cost feasible. We approximate several low-lying eigenvectors simultaneously in the block version of the TT format. The computation is done by the alternating minimization of the block Rayleigh quotient sequentially for all TT cores. The proposed method combines the advances of the density matrix renormalization group (DMRG) and the variational numerical renormalization group (vNRG) methods. We compare the performance of the proposed method with several versions of the DMRG codes, and show that it may be preferable for systems with large dimension and/or mode size, or when a large number of eigenstates is sought.  相似文献   

10.
The eigenvalues and eigenvectors of a matrix have many applications in engineering and science, such us studying and solving structural problems in both the treatment of signal or image processing, and the study of quantum mechanics. One of the most important aspects of an algorithm is the speed of execution, especially when it is used in large arrays. For this reason, in this paper the authors propose a new methodology using a genetic algorithm to compute all the eigenvectors and eigenvalues in real symmetric and Hermitian matrices. The algorithm uses a general-purpose library developed by the authors for genetic algorithms (GALGA). The speed of execution and the influence of population size have been studied. Moreover, the algorithm has been tested in different matrices and population sizes by comparing the speed of execution to the number of the eigenvectors. This new methodology is faster than the previous algorithm developed by the authors and all eigenvectors can be obtained with it. In addition, the performance using the Coope matrix has been tested contrasting the results with another technique published in the scientific literature.  相似文献   

11.
In this paper, we introduce and analyze a modification of the Hermitian and skew-Hermitian splitting iteration method for solving a broad class of complex symmetric linear systems. We show that the modified Hermitian and skew-Hermitian splitting (MHSS) iteration method is unconditionally convergent. Each iteration of this method requires the solution of two linear systems with real symmetric positive definite coefficient matrices. These two systems can be solved inexactly. We consider acceleration of the MHSS iteration by Krylov subspace methods. Numerical experiments on a few model problems are used to illustrate the performance of the new method.  相似文献   

12.
We consider the problem of minimizing the rank of a positive semidefinite matrix, subject to the constraint that an affine transformation of it is also positive semidefinite. Our method for solving this problem employs ideas from the ordered linear complementarity theory and the notion of the least element in a vector lattice. This problem is of importance in many contexts, for example in feedback synthesis problems, and such an example is also provided  相似文献   

13.
We present a system of classes, SHMatrix, to deal in a unified way with the computation of eigenvalues and eigenvectors in real symmetric and Hermitian matrices. Thus, two descendant classes, one for the real symmetric and other for the Hermitian cases, override the abstract methods defined in a base class. The use of the inheritance relationship and polymorphism allows handling objects of any descendant class using a single reference of the base class. The system of classes is intended to be the core element of more sophisticated methods to deal with large eigenvalue problems, as those arising in the variational treatment of realistic quantum mechanical problems. The present system of classes allows computing a subset of all the possible eigenvalues and, optionally, the corresponding eigenvectors. Comparison with well established solutions for analogous eigenvalue problems, as those included in LAPACK, shows that the present solution is competitive against them.

Program summary

Program title: SHMatrixCatalogue identifier: AEHZ_v1_0Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEHZ_v1_0.htmlProgram obtainable from: CPC Program Library, Queen?s University, Belfast, N. IrelandLicensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.htmlNo. of lines in distributed program, including test data, etc.: 2616No. of bytes in distributed program, including test data, etc.: 127 312Distribution format: tar.gzProgramming language: Standard ANSI C++.Computer: PCs and workstations.Operating system: Linux, Windows.Classification: 4.8.Nature of problem: The treatment of problems involving eigensystems is a central topic in the quantum mechanical field. Here, the use of the variational approach leads to the computation of eigenvalues and eigenvectors of real symmetric and Hermitian Hamiltonian matrices. Realistic models with several degrees of freedom leads to large (sometimes very large) matrices. Different techniques, such as divide and conquer, can be used to factorize the matrices in order to apply a parallel computing approach. However, it is still interesting to have a core procedure able to tackle the computation of eigenvalues and eigenvectors once the matrix has been factorized to pieces of enough small size. Several available software packages, such as LAPACK, tackled this problem under the traditional imperative programming paradigm. In order to ease the modelling of complex quantum mechanical models it could be interesting to apply an object-oriented approach to the treatment of the eigenproblem. This approach offers the advantage of a single, uniform treatment for the real symmetric and Hermitian cases.Solution method: To reach the above goals, we have developed a system of classes: SHMatrix. SHMatrix is composed by an abstract base class and two descendant classes, one for real symmetric matrices and the other for the Hermitian case. The object-oriented characteristics of inheritance and polymorphism allows handling both cases using a single reference of the base class. The basic computing strategy applied in SHMatrix allows computing subsets of eigenvalues and (optionally) eigenvectors. The tests performed show that SHMatrix is competitive, and more efficient for large matrices, than the equivalent routines of the LAPACK package.Running time: The examples included in the distribution take only a couple of seconds to run.  相似文献   

14.
Abstract For single splittings of Hermitian positive definite matrices, there are well-known convergence and comparison theorems. This paper gives new convergence and comparison results for double splittings of Hermitian positive definite matrices. Keywords: Hermitian positive definite matrix; convergence theorem; comparison theorem; double splitting Mathematics Subject Classification (2000): 65F10  相似文献   

15.
J. Povh  F. Rendl  A. Wiegele 《Computing》2006,78(3):277-286
We investigate the augmented Lagrangian penalty function approach to solve semidefinite programs. It turns out that this method generates iterates which lie on the boundary of the cone of semidefinite matrices which are driven to the affine subspace described by the linear equations defining the semidefinite program. We provide some computational experience with this method and show in particular, that it allows to compute the theta number of a graph to reasonably high accuracy for instances which are beyond reach by other methods. Supported in part by EU project Algorithmic Discrete Optimization (ADONET), MRTN-CT-2003-504438.  相似文献   

16.
In this paper, we use the quantum Jensen–Shannon divergence as a means of measuring the information theoretic dissimilarity of graphs and thus develop a novel graph kernel. In quantum mechanics, the quantum Jensen–Shannon divergence can be used to measure the dissimilarity of quantum systems specified in terms of their density matrices. We commence by computing the density matrix associated with a continuous-time quantum walk over each graph being compared. In particular, we adopt the closed form solution of the density matrix introduced in Rossi et al. (2013) 27 and 28 to reduce the computational complexity and to avoid the cumbersome task of simulating the quantum walk evolution explicitly. Next, we compare the mixed states represented by the density matrices using the quantum Jensen–Shannon divergence. With the quantum states for a pair of graphs described by their density matrices to hand, the quantum graph kernel between the pair of graphs is defined using the quantum Jensen–Shannon divergence between the graph density matrices. We evaluate the performance of our kernel on several standard graph datasets from both bioinformatics and computer vision. The experimental results demonstrate the effectiveness of the proposed quantum graph kernel.  相似文献   

17.
We investigate the space of quantum operations, as well as the larger space of maps which are positive, but not completely positive. A constructive criterion for decomposability is presented. A certain class of unistochastic operations, determined by unitary matrices of extended dimensionality, is defined and analyzed. Using the concept of the dynamical matrix and the Jamiokowski isomorphism we explore the relation between the set of quantum operations (dynamics) and the set of density matrices acting on an extended Hilbert space (kinematics). An analogous relation is established between the classical maps and an extended space of the discrete probability distributions.  相似文献   

18.
Both the mathematical theory and experiments have verified that the quantum state tomography based on compressive sensing is an efficient framework for the reconstruction of quantum density states. In recent physical experiments, we found that many unknown density matrices in which people are interested in are low-rank as well as sparse. Bearing this information in mind, in this paper we propose a reconstruction algorithm that combines the low-rank and the sparsity property of density matrices and further theoretically prove that the solution of the optimization function can be, and only be, the true density matrix satisfying the model with overwhelming probability, as long as a necessary number of measurements are allowed. The solver leverages the fixed-point equation technique in which a step-by-step strategy is developed by utilizing an extended soft threshold operator that copes with complex values. Numerical experiments of the density matrix estimation for real nuclear magnetic resonance devices reveal that the proposed method achieves a better accuracy compared to some existing methods. We believe that the proposed method could be leveraged as a generalized approach and widely implemented in the quantum state estimation.  相似文献   

19.
We present a method to estimate a positive semidefinite matrix by linear least squares, and we apply this method to the estimation of local compliance matrices during deformable object modeling. Estimation of physical quantities from measurements has to consider noise due to measurement and modeling inaccuracy. Enforcing constraints during estimation can guarantee physically plausible results even under difficult measurement conditions.  相似文献   

20.
Jürgen Garloff 《Computing》2012,94(2-4):97-107
The paper considers systems of linear interval equations, i.e., linear systems where the coefficients of the matrix and the right hand side vary between given bounds. We focus on symmetric matrices and consider direct methods for the enclosure of the solution set of such a system. One of these methods is the interval Cholesky method, which is obtained from the ordinary Cholesky decomposition by replacing the real numbers by the related intervals and the real operations by the respective interval operations. We present a method by which the diagonal entries of the interval Cholesky factor can be tightened for positive definite interval matrices, such that a breakdown of the algorithm can be prevented. In the case of positive definite symmetric Toeplitz matrices, a further tightening of the diagonal entries and also of other entries of the Cholesky factor is possible. Finally, we numerically compare the interval Cholesky method with interval variants of two methods which exploit the Toeplitz structure with respect to the computing time and the quality of the enclosure of the solution set.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号