首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 187 毫秒
1.
关于煤层气叠置成藏效应的研究通常注重煤系地层层序地层格架的时空配置,对于原位地应力制约下储层的"自封闭效应"关注不足,应力场垂向转换诱导的煤储层渗透性的非单调性变化及其对储层压力、含气性等成藏特征参数的调控作用常被忽视。系统分析了黔西地区煤储层地应力场的垂向分布规律及其构造控制效应,揭示了渗透率随埋深的非指数变化规律及其在沁水、鄂东等含煤盆地的普适性,探讨了储层压力、压力系数垂向差异性分布及其与地应力-渗透率的匹配关系。黔西地区煤储层水平主应力(200~1 300 m)是埋深和构造综合作用的结果,含煤向斜轴部是水平主应力最为集中的区域。根据应力梯度垂向演变规律可以将其划分为应力挤压区(200~500 m,水平构造应力主导)、应力释放区(500~750 m,垂直应力主导)、应力过渡区(750~1 000 m,近向斜轴部)和构造集中区(1 000 m,向斜轴部低点部位,高应力区)。埋深中段的应力释放区有利于相对高渗储层的形成(平均0.2×10~(-15) m~2),在此深度区间上下(200~500 m,平均0.06×10~(-15) m~2;750 m,平均0.02×10~(-15) m~2)渗透率普遍较低。渗透率随埋深的这种非单调性变化规律具有普遍性,黔西盘关—土城向斜、比德—三塘向斜埋深中段均存在渗透率相对高值区,沁南(650~800 m)、鄂东(800~950 m)、滇东(600~800 m)、准南(600~800 m)等含煤盆地内这一现象也并不鲜见。原位条件下,低渗储层(0.1×10~(-15) m~2)的"自封闭"作用使其可以不依赖于盖层等封堵条件,即可构成层间相对独立的流体单元。例如,黔西地区200~500 m,750 m埋深段的低渗储层自封闭成藏作用显著,储层压力与埋深相关性较差,含气量与压力系数垂向呈"波动式"的无规律变化,常压、欠压、超压储层均有分布,流体压力系统叠置发育。500~750 m的相对高渗储层需外围形成致密的封堵盖层才能阻断层间的流体联系,相对于其他埋深区间更有利于形成统一的流体压力系统,储层压力随埋深增加或层位降低而单调递增,压力系数无明显波动,基本以常压储层为主,含气量随着埋深增大而增大。在同一煤层或气藏内部,储层相对致密部分也可能会封堵高孔渗部分的流体,导致流体压力系统横向上多段叠置。  相似文献   

2.
采用水压致裂测量地应力方法取得了黄陇侏罗纪煤田37个煤层地应力数据,通过数据统计和相关模型分析,研究了黄陇侏罗纪煤田现代应力场特征,地应力与煤储层压力耦合关系及其对煤层气开发和煤矿安全生产的意义。研究结果表明:1)研究区最大、最小主应力和剪切应力随着埋深增大而增大,最大主应力转换深度大约为800 m。侧压系数具有浅部分散,深部聚拢的特征。从600 m开始应力场类型从拉伸状态的正断层应力组合机制向挤压状态的走滑断层应力组合机制转化,至1 200 m基本趋于静压力场。2)研究区有效应力偏低,煤储层以欠压储层为主,不利于煤层气富集,含气饱和度为6.52%~30.6%,临储比较低,不利于煤层气排采。随着最小水平主应力增大煤储层渗透率呈负指数减小,同时应力的垂向转换影响了压裂过程中裂缝的发育形态。3)依据煤矿冲击地压实例,600 m以深地应力作用下的挤压应力场是研究区煤矿冲击地压灾害的根本控因,但对煤与瓦斯突出影响不明显。煤田地质勘探过程中应补充对煤岩层冲击性和地应力评价内容,从而避免在矿井建设过程中遇到冲击地压灾害而修改设计造成损失。  相似文献   

3.
为研究平顶山东北部区域地应力对煤储层压力、渗透率的控制作用,依据煤层气井水力压裂和试井工程试验资料,采取水力致裂手段获取地应力的方法,研究了平顶山东北部矿区地应力发育特征,分析了地应力对煤储层压力、渗透率的控制作用。研究表明现今地应力场总体上以水平应力为主,属于典型的构造应力场类型,且总体应力场特征为高倾角断层或裂隙发育|最大水平主应力、最小水平主应力、侧压系数和侧压比均随埋深的增加而线性增加|埋深约在682m时,地应力类型发生转换,地应力类型在垂向的转变原因主要受平顶山矿区多期构造运动所引起的地应力叠加的结果|煤储层压力随着最小水平主应力、垂向应力、有效应力和主应力差的增加呈现增大趋势|渗透率随着主应力差、最大水平有效主应力和最小水平有效主应力关系以负指数形式呈现降低趋势。研究认为构造应力集中区域、低渗透率分布区域是煤层气压裂等储层改造和井下煤层增透卸压工程重点布置区域。  相似文献   

4.
通过对我国煤储层参数获取方法的分析,选取注入/压降测试方法作为研究重点,对试井参数选取、测试过程等进行介绍,通过注入/压降和原地应力测试,以四川省某煤层气参数井为例,获取该井的储层压力、渗透率、表皮系数、破裂压力、闭合压力等参数,并对煤储层特征进行评价,为该区煤层气生产潜能评价和开发试验提供可靠参数依据。  相似文献   

5.
通过煤田钻孔和已钻煤层气参数井资料对沁水盆地北部七元煤矿首采区15~#煤的煤岩、煤质类型、埋深、厚度、物性、温度和压力、含气性和等温吸附等储层特征进行了分析研究,并制定了定量排采制度。结果表明,15~#煤储层厚度稳定,平均3.37m,埋深适中,平均730m。煤岩类型以半亮型煤为主,热演化程度较高,镜质体反射率为2.5%~3.15%,含气量4.02~17.13m3/t,平均13.50m~3/t,有利于煤层气开发。但15~#煤平均孔隙度5.85%,平均渗透率0.43m D,属低孔低渗储层。储层压力范围为1.93~5.38MPa,平均3.07MPa,储层平均压力梯度0.43MPa/100m,储层欠压严重,不利于煤层气开发。8口排采井见气前排采速率是见气后排采速率的3.8~7.7倍,见气前压降幅度8.8~10.5k Pa/d,见气后压降幅度1.9~2.5k Pa/d。根据排采井的地质特征,精确控制压降的定量排采制度是影响煤层气排采井产量的关键因素。  相似文献   

6.
为了开发利用新中标的武乡南区块煤层气资源,对深部煤层气资源的开采提供理论指导,基于地质分析与实验模拟相结合的思路与方法,结合模拟煤储层条件下的等温吸附与渗流实验,预测了深部煤储层含气性与渗透性随着埋深增大的变化特征,并发现了深部不同于浅部的变化趋势,指导了后期煤层气开发的工程实践。研究结果表明:深部煤储层压力与温度共同制约含气量的大小,且深部煤储层含气量发生转折的临界深度为1 820 m,超过这一临界深度含气量逐渐降低;深部煤储层温度与地应力共同制约渗透率的大小,且深部煤储层渗透率发生转折的标志埋深是1 600 m;鉴于深部煤储层低渗的特点,有效地对深部煤储层含气量、渗透率及其可改造性进行分析与探讨,认为煤层气开发的深部地质边界为埋深1 800 m。  相似文献   

7.
采用水压致裂测量地应力方法,获得了鄂尔多斯盆地东南缘26口煤层气井地应力分布,通过统计分析,建立了二叠系山西组2煤储层地应力与煤层埋藏深度之间的相关关系和模型,揭示了现今地应力分布规律及受控机制。研究结果表明,本区二叠系山西组2煤层破裂压力梯度、闭合压力梯度和煤储层压力梯度的平均值分别为 1.96,1.69,0.71 MPa/100 m。煤储层最大水平主应力、最小水平主应力和垂直主应力以及储层压力均随着煤层埋藏深度增大呈线性规律增高。在 1 000 m 以浅煤储层地应力状态主要表现为σv>σhmax >σhmin ,最小水平主应力小于16 MPa,现今地应力处于拉伸应力状态,煤储层有效应力系数K0 为0.48,且低于油气盆地页岩层中的有效应力系数值(K0 =0.80);在1 000 m以深煤储层地应力状态转化为σhmax ≥σv≥σhmin ,最小水平主应力大于16 MPa,现今地应力转化为挤压应力状态。本区现今地应力受华北区域构造应力场控制,最大水平主应力方向主要以NEE-SWW方向为特征。本区煤储层压力偏低,相同深度条件下鄂尔多斯盆地东南缘煤储层压力要比沁水盆地南部偏低0.73~0.93 MPa,且煤储层压力与地应力呈正相关关系,随着地应力的增加,煤储层压力增大。  相似文献   

8.
古构造应力场与低渗煤储层的相对高渗区预测   总被引:6,自引:0,他引:6  
利用古构造应力场模拟成果,结合钻孔煤芯描述、煤矿井下观测和煤层气井试井渗透率资料,在低渗煤储层广泛发育的淮南煤田预测了相对高渗区.综合分析表明,古应力高的地区也是构造煤发育区,而构造煤是导致煤储层渗透性降低的主要因素.因此,古应力较低的区域,可能是原生结构煤发育的相对高渗区.  相似文献   

9.
现今地应力状态(大小和方向)和煤储层渗透率是影响煤层气勘探开发的重要地质因素.基于震源机制解反演、水力压裂等方法确定了滇东-黔西地区现今地应力状态,揭示了二叠系煤层地应力大小垂向变化规律,并在此基础上剖析了滇东-黔西地区二叠系煤储层渗透率发育特征及其控制因素.研究结果表明:滇东-黔西地区水平最大主应力(SH,max)方...  相似文献   

10.
以柿庄南区块112口煤层气井为研究对象,采用水力压裂法计算煤储层地应力,获取了研究区地应力及破裂压力展布特征,分别建立了破裂压力与水平主应力、有效应力之间的相关模型,揭示了该区块3号煤储层地应力与破裂压力之间的耦合关系,并剖析了地应力对破裂压力的影响。研究结果表明:柿庄南区块3号煤储层整体为中等至高应力区,地应力场类型在垂向上发生转换,埋深400~640 m区域以逆断层应力场型为主,640~810 m区域以走滑断层应力场型为主,810 m以深区域以正断层应力场型为主;侧压系数一般为0.38~1.99,埋深600 m以浅区域,绝大多数大于1,埋深600~800 m区域,侧压系数为0.52~1.93,埋深800 m以深区域,侧压系数均小于1;该区块破裂压力为12.89~36.10 MPa,破裂压力梯度为1.47~6.09 MPa/hm,破裂压力与埋深呈现反“S”形变化,810 m以浅破裂压力离散性较大,整体与埋深呈现负相关,810 m以深破裂压力与埋深呈现正相关;该区块最大水平主应力、最小水平主应力及其各自应力梯度与煤储层破裂压力在一定程度上呈现正相关,但相关性不强;同一埋深条件下,破裂压...  相似文献   

11.
陈世达  汤达祯  陶树  赵俊龙  李勇  刘文卿 《煤炭学报》2016,41(12):3069-3075
基于沁南—郑庄区块35层次煤层气井注入/压降及地应力实测数据,系统分析了郑庄区块地应力垂向变化规律,并在此基础上探讨了煤储层渗透性、含气性、气水产出垂向差异性演化,揭示了郑庄地区深部煤层气界限。郑庄区块地应力状态在垂向上发生转换:575 m以浅,σHσvσh,表现为大地动力场,现今地应力状态为压缩状态;575 m~675 m,水平主应力较浅部有所降低(σH≈σvσh),表现为准静水压力场,现今地应力状态为过渡状态(由压缩状态过渡为拉张状态);675~825 m以深,σvσHσh,表现为大地静力场型,现今地应力状态为拉张状态;825 m以深,σHσvσh,现今地应力状态为压缩状态。煤储层试井渗透率随埋深的变化与地应力场状态的转变基本一致,其实质是地应力作用下煤体孔隙结构的变形与破坏;含气量与埋深之间存在一个"临界深度"范围(800~1 000 m),超过此埋深范围之后煤层含气量随埋深增大而趋于降低。整体来说,825m以深煤层气资源处于地应力转换状态和(或)含气量"临界深度"之下,其赋存和开发地质条件发生转换,气体采收率相对较低,属于深部煤层气范畴。该埋深(825 m)以下煤层气开发将面临"低渗透率、低含气量、高地应力"的挑战。  相似文献   

12.
针对沁水盆地深部煤层气地质与储层认识不足、开发措施还在探索阶段等现状,以寿阳区块15煤为研究对象,探讨了深部煤层气地质特殊性及开发对策。研究区15煤层发育稳定,煤层厚度基本在3m左右|煤层含气量大部分在10~12m3/t,纵向上受煤层埋深和变质程度的双重影响,含气量在埋深大约1200~1500m出现临界点后随深度增加逐渐降低。与其他深部地区“三高”特征不同,15煤深部储层表现为低压、高应力、中等地温的特征,属比较严重的低压力梯度和低地温梯度范畴。煤储层渗透性为高孔低渗分类,渗透率一般0.01~0.1mD,渗透性主要受煤层埋深、地应力、煤体结构和孔隙特征影响。根据15煤低水分含量、高孔隙度以及生产井产气特征,认为游离气含量可能具有较大的占比。最后提出,单独开发15煤层时可采用顶板岩层水平井分段压裂方式或围岩多分支水平井方式,该技术已在盆地南部15煤取得了产气突破|15煤层及9、3煤层多煤层开发时可采用围岩与煤层合压的垂直井方式,并对开发工程中的增产和排采工艺提出了相应的建议。  相似文献   

13.
黔西都格井田煤层气储层特征及可采性   总被引:1,自引:0,他引:1       下载免费PDF全文
为预测评价黔西都格井田煤层气资源的可采潜力,推进黔西地区薄至中厚煤层群发育条件下的煤层气勘探开发工作,基于在该井田内实施的煤层气井所获得的地质资料,分析了可采煤层和顶底板发育条件、储层压力、含气性和孔渗性等重要储层地质特征,利用等温吸附曲线、相似地区储层类比和实际排采结果拟合等方法预测了煤层气可采性。结果表明:都格井田可采煤层含气量为3.94~29.95 m3/t,平均12.48 m3/t,含气饱和度平均为60%,煤储层以常压为主,含气饱和度较高,并有含气量高、孔渗性好的特点。通过等温吸附曲线法、类比法、排采试验数据拟合等3种不同方法预测都格井田可采系数分别为:0.49~0.68,0.40~0.53和0.41,综合评价可采系数为0.41~0.68,说明了井田具有较好的煤层气开发条件和可采性。  相似文献   

14.
姜玮  吴财芳 《煤炭学报》2011,36(10):1674-1678
依据大量的煤田地质资料和实验测试数据,探讨了织纳煤田主要煤层煤储层弹性能在平面及垂向上的分布规律和展布特征。通过对研究区煤层裂隙系统指数(ξ1)、煤层压力系统指数(ξ2)和煤层裂隙开合系数(Δ)3个参数的分析,阐明了煤储层弹性能对煤层气有利选区的控制作用。研究结果表明:织纳煤田主煤层弹性能在平面上呈"西高东低、南高北低...  相似文献   

15.
为摸清河北省煤系天然气资源潜力,揭示其耦合成藏作用,采用等温吸附、TOC含量测试、X衍射、岩石热解、高压压汞、液氮吸附、显微组分镜鉴、脉冲渗透率等试验测试,对源-储地化和物性特征进行研究,结合各赋煤构造区煤系沉积-构造演化史,进行煤系天然气资源评价并揭示其成藏作用。结果显示:河北省煤系天然气资源丰富,煤层气资源量39 015×108m3,页岩气资源量33 447×108m3,致密砂岩气资源量24 000×108m3,石炭二叠系占绝对优势;烃源岩有机质以Ⅲ型为主,成熟度Ro介于0.5%~3.0%,以成熟—过成熟阶段为主;煤对煤系天然气藏起决定作用,富有机质泥页岩起关键作用,泥页岩的厚度优势弥补了有机质"欠缺";煤系储层连通性较好,属低孔低渗型,二次生烃作用是煤系天然气成藏的关键;共生调节机制煤层气表现为层间调节,页岩气为层内调节,砂岩气为协调调节;基于共生调节机制和空间叠置关系,将煤系天然气藏分为"远源"致密砂岩气藏、"自源"页岩气/煤层气藏和"自源+他源"叠合气藏3类,后者包括3种成藏模式。  相似文献   

16.
基于新义井田深部勘查区煤田地质勘查成果,分析了该区构造和二1煤层展布特征,研究了二1煤储层特征、煤层气含量及其分布规律、煤层气赋存条件。研究认为,勘查区二1煤变质程度高,有利于煤层气的生成;煤储层孔隙度较高、围岩封闭性好,有利于煤层气赋存;煤体结构遭到严重破坏不利于煤层气运移;属正常压力、低渗煤储层。煤层气含量与埋深呈正相关趋势,DF1断层为煤层气逸散通道。  相似文献   

17.
基于流-固-热耦合的深部煤层气抽采数值模拟   总被引:3,自引:0,他引:3       下载免费PDF全文
范超军  李胜  罗明坤  杨振  张浩浩  王硕 《煤炭学报》2016,41(12):3076-3085
为了提高深部煤储层产气规律预测准确性、减小气井设计误差,分析了深部煤储层特征参数随埋深的变化规律,针对目前煤层气研究忽略了温度、地下水等因素问题,基于已建立的深部煤层气抽采流-固-热耦合模型,进行深部煤层气抽采数值模拟,分析不同地应力、初始渗透率、储层压力和温度等深部特征参数以及不同埋深条件下煤层气抽采的储层参数和产气演化规律。结果表明:渗透率变化为地应力增加、温度降低和煤层气解吸引起的煤基质收缩效应与储层压力降低引起的煤基质膨胀效应的综合竞争结果;随着煤层气和水被采出,储层温度降低和煤层气解吸占主导,储层渗透率升高;地应力对深部储层渗透率比例的变化起着主要作用,初始渗透率对产气速率起着控制作用;当煤层埋深小于临界埋深时,产气量随埋深逐渐增加,达到临界埋深后,产气量随埋深逐渐降低;低渗透率是制约埋深超千米的气井高产的关键。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号