首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
In recent years, many academy researchers have proposed several forecasting models based on technical analysis to predict models such as Engle, 1982, Cheng et al., 2010. After reviewing the literature, two major drawbacks are found in past models: (1) the forecasting models based on artificial intelligence algorithms (AI), such as neural networks (NN) and genetic algorithms (GAs), produce complex and unintelligible rules; and (2) statistic forecasting models, such as time series, require some basic assumptions for variables and build forecasting models based on mathematic equations, which are not easily understandable by stock investors. In order to refine these drawbacks of past models, this paper has proposed a model, based on adaptive-network-based fuzzy inference system which uses multi-technical indicators, to predict stock price trends. Three refined processes have proposed in the hybrid model for forecasting: (1) select essential technical indicators from popular indicators by a correlation matrix; (2) use the subtractive clustering method to partition technical indicator value into linguistic values based on an data discretization method; (3) employ a fuzzy inference system (FIS) to extract rules of linguistic terms from the dataset of the technical indicators, and optimize the FIS parameters based on an adaptive network to produce forecasts. A six-year period of the TAIEX is employed as experimental database to evaluate the proposed model with a performance indicator, root mean squared error (RMSE). The experimental results have shown that the proposed model is superior to two listing models (Chen’s and Yu’s models).  相似文献   

2.
Linear model is a general forecasting model and moving average technical index (MATI) is one of useful forecasting methods to predict the future stock prices in stock markets. Therefore, individual investors, stock fund managers, and financial analysts attempt to predict price fluctuation in stock markets by either linear model or MATI. From literatures, three major drawbacks are found in many existing forecasting models. First, forecasting rules mined from some AI algorithms, such as neural networks, could be very difficult to understand. Second, statistic assumptions about variables are required for time series to generate forecasting models, which are not easily understandable by stock investors. Third, stock market investors usually make short-term decisions based on recent price fluctuations, i.e., the last one or two periods, but most time series models use only the last period of stock price. In order to overcome these drawbacks, this study proposes a hybrid forecasting model using linear model and MATI to predict stock price trends with the following four steps: (1) test the lag period of Taiwan Stock Exchange Capitalization Weighted Stock Index (TAIEX) and calculate the last n-period moving average; (2) use subtractive clustering to partition technical indicator values into linguistic values based on data discretization method objectively; (3) employ fuzzy inference system (FIS) to build linguistic rules from the linguistic technical indicator dataset, and optimize the FIS parameters by adaptive network; and (4) refine the proposed model by adaptive expectation models. The proposed model is then verified by root mean squared error (RMSE), and a ten-year period of TAIEX is selected as experiment datasets. The results show that the proposed model is superior to the other forecasting models, namely Chen's model and Yu's model in terms of RMSE.  相似文献   

3.
Time series forecasting is an important and widely popular topic in the research of system modeling, and stock index forecasting is an important issue in time series forecasting. Accurate stock price forecasting is a challenging task in predicting financial time series. Time series methods have been applied successfully to forecasting models in many domains, including the stock market. Unfortunately, there are 3 major drawbacks of using time series methods for the stock market: (1) some models can not be applied to datasets that do not follow statistical assumptions; (2) most time series models that use stock data with a significant amount of noise involutedly (caused by changes in market conditions and environments) have worse forecasting performance; and (3) the rules that are mined from artificial neural networks (ANNs) are not easily understandable.To address these problems and improve the forecasting performance of time series models, this paper proposes a hybrid time series adaptive network-based fuzzy inference system (ANFIS) model that is centered around empirical mode decomposition (EMD) to forecast stock prices in the Taiwan Stock Exchange Capitalization Weighted Stock Index (TAIEX) and Hang Seng Stock Index (HSI). To measure its forecasting performance, the proposed model is compared with Chen's model, Yu's model, the autoregressive (AR) model, the ANFIS model, and the support vector regression (SVR) model. The results show that our model is superior to the other models, based on root mean squared error (RMSE) values.  相似文献   

4.
Stock market price is one of the most important indicators of a country's economic growth. That's why determining the exact movements of stock market price is considerably regarded. However, complex and uncertain behaviors of stock market make exact determination impossible and hence strong forecasting models are deeply desirable for investors' financial decision making process. This study aims at evaluating the effectiveness of using technical indicators, such as simple moving average of close price, momentum close price, etc. in Turkish stock market. To capture the relationship between the technical indicators and the stock market for the period under investigation, hybrid Artificial Neural Network (ANN) models, which consist in exploiting capabilities of Harmony Search (HS) and Genetic Algorithm (GA), are used for selecting the most relevant technical indicators. In addition, this study simultaneously searches the most appropriate number of hidden neurons in hidden layer and in this respect; proposed models mitigate well-known problem of overfitting/underfitting of ANN. The comparison for each proposed model is done in four viewpoints: loss functions, return from investment analysis, buy and hold analysis, and graphical analysis. According to the statistical and financial performance of these models, HS based ANN model is found as a dominant model for stock market forecasting.  相似文献   

5.
Evolutionary algorithms are generally used to find or generate the best individuals in a population. Whenever these algorithms are applied to agent systems, they will lead to optimal solutions. Genetic Network Programming (GNP), which contains graph networks, is one of the developed evolutionary algorithms. When the aim is to forecast the share price or return, ascending and descending trends, volatilities, recent returns, fundamental and technical factors have remarkable impacts on the prediction. This is why technical indicators are used to constitute a set of trading rules. In this paper, we apply an integrated framework consisting of GNP model along with a reinforcement learning and Multi-Layer Perceptron (MLP) neural network to classify data and also time series models to forecast the stock return. Moreover, we utilize rules of accumulation based on the GNP model’s results to forecast the return. The aim of using these models alongside one another is to estimate one-day return. The results derived from 9 stocks with regard to the Tehran Stock Exchange Market. GNP extracts a prodigious number of rules on the basis of 5 technical indicators with 3 times period. Next, MLP network classifies data and finds the similarity between future data and past data concerning a stock (5 sub-period) through classification. Subsequently, a number of conditions are established, in order to choose the best estimation between GNP-RL and ARMA. Distinct comparison with the ARMA–GARCH model, which is operated for return estimation and risk measurement in many researches, demonstrates an extended forecasting power of the proposed model, by the name of GNP–ARMA, reducing error by a mean of 16%.  相似文献   

6.
Stock/futures price forecasting is an important financial topic for individual investors, stock fund managers, and financial analysts and is currently receiving considerable attention from both researchers and practitioners. However, the inherent characteristics of stock/futures prices, namely, high volatility, complexity, and turbulence, make forecasting a challenging endeavor. In the past, various approaches have been proposed to deal with the problems of stock/futures price forecasting that are difficult to resolve by using only a single soft computing technique. In this study, a hybrid procedure based on a backpropagation (BP) neural network, a feature selection technique, and genetic programming (GP) is proposed to tackle stock/futures price forecasting problems with the use of technical indicators. The feasibility and effectiveness of this procedure are evaluated through a case study on forecasting the closing prices of Taiwan Stock Exchange Capitalization Weighted Stock Index (TAIEX) futures of the spot month. Experimental results show that the proposed forecasting procedure is a feasible and effective tool for improving the performance of stock/futures price forecasting. Furthermore, the most important technical indicators can be determined by applying a feature selection method based on the proposed simulation technique, or solely on the preliminary GP forecast model.  相似文献   

7.
Stock market investors value accurate forecasting of future stock price from trading systems because of the potential for large profits. Thus, investors use different forecasting models, such as the time-series model, to assemble a superior investment portfolio. Unfortunately, there are three major drawbacks to the time-series model: (1) most statistical methods rely on some assumptions about the variables; (2) most conventional time-series models use only one variable in forecasting; and (3) the rules mined from artificial neural networks are not easily understandable. To address these shortcomings, this study proposes a new model based on multi-stock volatility causality, a fusion adaptive-network-based fuzzy inference system (ANFIS) procedure, for forecasting stock price problems in Taiwan. Furthermore, to illustrate the proposed model, three practical, collected stock index datasets from the USA and Taiwan stock markets are used in the empirical experiment. The experimental results indicate that the proposed model is superior to the listing methods in terms of root mean squared error, and further evaluation reveals that the profits comparison results for the proposed model produce higher profits than the listing models.  相似文献   

8.
Despite the widespread use of time series models in stock index forecasts, some of these models have encountered problems: (1) the selection of input factors may depend on personal experience or opinion; and (2) most conventional time series models consider only one variable. Furthermore, traditional forecasting models suffer from the following drawbacks: (1) models may rely on restrictive assumptions (such as linear separability or normality) about the variables being analyzed; and (2) it is hard to define and select applicable input factors for artificial neural networks (ANNs) in particular, and the rules generated from ANNs are not easily understood. To address these issues, we propose a multi-factor time series model based on an adaptive network-based fuzzy inference system (ANFIS) for stock index forecasting. In the proposed model, stepwise regression was first applied for the objective selection of technical indicators and then combined with ANFIS to construct the forecasting model. We evaluated the performance of our proposed model against three other models, with transaction data from the Taiwan Stock Exchange Capitalization Weighted Stock Index (TAIEX) and the Hong Kong Hang Seng Index (HSI) stock markets from 1998 to 2006 as experimental data sets and the root mean square error (RMSE) as the evaluation criterion. The results show the superiority of the proposed combined model, which outperformed other models in terms of RMSE and profitability, with strategies for increasing long-term uses of stock index forecasts made on the TAIEX and the HSI.  相似文献   

9.
In recent years, there have been many time series methods proposed for forecasting enrollments, weather, the economy, population growth, and stock price, etc. However, traditional time series, such as ARIMA, expressed by mathematic equations are unable to be easily understood for stock investors. Besides, fuzzy time series can produce fuzzy rules based on linguistic value, which is more reasonable than mathematic equations for investors. Furthermore, from the literature reviews, two shortcomings are found in fuzzy time series methods: (1) they lack persuasiveness in determining the universe of discourse and the linguistic length of intervals, and (2) only one attribute (closing price) is usually considered in forecasting, not multiple attributes (such as closing price, open price, high price, and low price). Therefore, this paper proposes a multiple attribute fuzzy time series (FTS) method, which incorporates a clustering method and adaptive expectation model, to overcome the shortcomings above. In verification, using actual trading data of the Taiwan Stock Index (TAIEX) as experimental datasets, we evaluate the accuracy of the proposed method and compare the performance with the (Chen, 1996 [7], Yu, 2005 [6], and Cheng, Cheng, & Wang, 2008 [20]) methods. The proposed method is superior to the listing methods based on average error percentage (MAER).  相似文献   

10.
Forecasting the direction of the daily changes of stock indices is an important yet difficult task for market participants. Advances on data mining and machine learning make it possible to develop more accurate predictions to assist investment decision making. This paper attempts to develop a learning architecture LR2GBDT for forecasting and trading stock indices, mainly by cascading the logistic regression (LR) model onto the gradient boosted decision trees (GBDT) model. Without any assumption on the underlying data generating process, raw price data and twelve technical indicators are employed for extracting the information contained in the stock indices. The proposed architecture is evaluated by comparing the experimental results with the LR, GBDT, SVM (support vector machine), NN (neural network) and TPOT (tree-based pipeline optimization tool) models on three stock indices data of two different stock markets, which are an emerging market (Shanghai Stock Exchange Composite Index) and a mature stock market (Nasdaq Composite Index and S&P 500 Composite Stock Price Index). Given the same test conditions, the cascaded model not only outperforms the other models, but also shows statistically and economically significant improvements for exploiting simple trading strategies, even when transaction cost is taken into account.  相似文献   

11.
股票价格预测的建模与仿真研究   总被引:2,自引:0,他引:2  
研究股票价格准确预测问题,由于股票价格数据具非线性、随机性等变化规律,同时股票市场与国内外经济政治变化有关,传统股票价格预测方法只能对其线性变化规律进行准确预测,无法反映股票价格非线性部分进行有效建模,导致股价预测精度不高。为了提高股票价格预测精度,提出了一种遗传优化BP神经网络的股票价格预测模型。充分利用BP神经网络良好的非线性映射能力,对股票价格变化规律进行建模,并通过遗传算法对BP神经网络模型参数进行优化,从而获最优股票价格最优预测模型。实验结果表明,相对于传统股票价格预测模型,遗传算法优化BP神经网络的股票价格预测模型拟合程度更好,预测精度更高,为股票价格预测提供了依据。  相似文献   

12.
Prediction of stock price index movement is regarded as a challenging task of financial time series prediction. An accurate prediction of stock price movement may yield profits for investors. Due to the complexity of stock market data, development of efficient models for predicting is very difficult. This study attempted to develop two efficient models and compared their performances in predicting the direction of movement in the daily Istanbul Stock Exchange (ISE) National 100 Index. The models are based on two classification techniques, artificial neural networks (ANN) and support vector machines (SVM). Ten technical indicators were selected as inputs of the proposed models. Two comprehensive parameter setting experiments for both models were performed to improve their prediction performances. Experimental results showed that average performance of ANN model (75.74%) was found significantly better than that of SVM model (71.52%).  相似文献   

13.
Fuzzy time series models that have been developed have been widely applied to many applications of forecasting future stock prices or weighted indexes in the financial field. Three interesting problems have been identified in relation to the associated time series methods, as follows: (1) conventional time series models that consider single variables on associated problems only, (2) fuzzy time series models that determine the interval length of the linguistic values subjectively, and (3) selected variables that depend on personal experience and opinion subjectively. In light of the above limitations, this study constitutes a hybrid seven-step procedure that proposes three integrated fuzzy time series models that are based on fitting functions to forecast weighted indexes of the stock market. First, the proposed models employ Pearson correlation coefficients to objectively select important technical indicators. Second, this study utilizes an objective algorithm to determine the lower bound and upper bound of the universe of discourse automatically. Third, the proposed models use the spread-partition algorithm to automatically determine linguistic intervals. Finally, they combine the transformed variables to build three fuzzy time series models using the criterion of the minimal root mean square error (RMSE). Furthermore, this study provides all of the necessary justifying information for using a linear process to select the inputs for the given non-linear data. To further evaluate the performance of the proposed models, the transaction records of TAIEX (Taiwan Stock Exchange Capitalization Weighted Stock Index) and HSI (Hang Seng Indexes) from 1998/01/03 to 2006/12/31 are used to illustrate the methodology with two experimental data sets. Chen’s (Fuzzy Sets Syst. 81:311–319, 1996) model, Yu’s (Physica A 349:609–624, 2005) model, support vector regression (SVR), and partial least square regression (PLSR) are used as models to be compared with the proposed model when given the same data sets. The analytical results show that the proposed models outperform the listed models under the evaluation criteria of the RMSE (in contrast to the forecasting accuracy) for forecasting a weighted stock index in both the Taiwan and Hong Kong stock markets.  相似文献   

14.
This paper provides evidence that forecasts based on global stock returns transmission yield better returns in day trading, for both developed and emerging stock markets. The study investigates the performance of global stock market price transmission information in forecasting stock prices using support vector regression for six global markets—USA (Dow Jones, S&P500), UK (FTSE-100), India (NSE), Singapore (SGX), Hong Kong (Hang Seng) and China (Shanghai Stock Exchange) over the period 1999–2011. The empirical analysis shows that models with other global market price information outperform forecast models based merely on auto-regressive past lags and technical indicators. Shanghai stock index movement was predicted best by Hang Seng Index opening price (57.69), Hang Seng Index by previous day’s S&P500 closing price (54.34), FTSE by previous day’s S&P500 closing price (57.94), Straits Times Index by previous day’s Dow Jones closing price (54.44), Nifty by HSI opening price (60), S&P500 by STI closing price (55.31) and DJIA by HSI opening price (55.22), and Nifty was found to be the most predictable stock index. Trading using global cues-based forecast model generates greater returns than other models in all the markets. The study provides evidence that stock markets across the globe are integrated and the information on price transmission across markets, including emerging markets, can induce better returns in day trading.  相似文献   

15.
Stock market prediction is regarded as a challenging task in financial time-series forecasting. The central idea to successful stock market prediction is achieving best results using minimum required input data and the least complex stock market model. To achieve these purposes this article presents an integrated approach based on genetic fuzzy systems (GFS) and artificial neural networks (ANN) for constructing a stock price forecasting expert system. At first, we use stepwise regression analysis (SRA) to determine factors which have most influence on stock prices. At the next stage we divide our raw data into k clusters by means of self-organizing map (SOM) neural networks. Finally, all clusters will be fed into independent GFS models with the ability of rule base extraction and data base tuning. We evaluate capability of the proposed approach by applying it on stock price data gathered from IT and Airlines sectors, and compare the outcomes with previous stock price forecasting methods using mean absolute percentage error (MAPE). Results show that the proposed approach outperforms all previous methods, so it can be considered as a suitable tool for stock price forecasting problems.  相似文献   

16.
Stock price variation predictions are at the core of many research issues, and neural networks (NNs) are widely applied and were proven to be more efficient than time series forecasting for stock price forecasting. However, this type of research always determines the parameter settings of the NNs rationally through a trial-and-error methodology. This paper integrates design of experiment (DOE), Taguchi method, and back-propagation NN (BPNN) to construct a robust engine to further optimize the prediction accuracy under a robust DOE-based predictor. Adopting data from Taiwan Stock Exchange (TWSE), the technical analytical indexes and β value of the listed stocks of TWSE were computed. The research results indicated that the proposed approach can effectively improve the forecasting rate of stock price variations.  相似文献   

17.
股价预测是投资策略形成和风险管理模型发展的基础。为了降低股价变化趋势中的噪声信息和投资者关于两种股价预测误差的不同偏好对股价预测的影响,提出了基于信噪比的模糊近似支持向量回归(FPSVR)的股价预测模型。首先构建信噪比输入变量,然后引入模糊隶属度和双边权重测量方法对支持向量回归(SVR)模型进行改进,最后借助沪深300成份股2008至2019年的股票时间序列日数据,按照股市的波动情况将其分为三个阶段(牛市、熊市、震荡市),并建立三个基准模型进行对比分析。研究结果表明:与三个基准模型相比,所提出的股价预测模型的预测误差最低;与原有的SVR模型相比,FPSVR模型可以更好地对处于牛市和震荡市阶段的股票时间序列进行股价预测。  相似文献   

18.
郑斯日古楞 《计算机仿真》2012,29(2):382-385,415
研究股票价格预测问题,股票价格具非线性和不确定性变化规律。传统单一模型只能反映股票价格部分信息,预测精度不高。为了提高股票价格预测精度,在分析股票价格变化特征基础上,提出一种灰色神经网络的股票价格预测方法。首先采用GM(1,1)模型对股票价格进行预测,捕捉其线性、灰色变化规律,然后采用BP神经网络对GM(1,1)预测残差进行建模预测,捕捉其非线性和不确定性变化规律,最后两者结果相加得到股票价格最终预测结果。将灰色神经网络用于浦发银行(60000)股票收盘价为例预测,结果表明,相于传统预测模型,灰色神经网络提高了股票价格预测精度,更能全面挖掘股票价格变化规律,在股票价格预测中具有广泛的应用前景。  相似文献   

19.
Stock market forecasting is important and interesting, because the successful prediction of stock prices may promise attractive benefits. The economy of Taiwan relies on international trade deeply, and the fluctuations of international stock markets will impact Taiwan stock market. For this reason, it is a practical way to use the fluctuations of other stock markets as forecasting factors for forecasting the Taiwan stock market. In this paper, the proposed model uses the fluctuations of other national stock markets as forecasting factors and employs a genetic algorithm (GA) to refine the weights of rules joining in an ANFIS model to forecast the Taiwan stock index. To evaluate the forecasting performances, the proposed model is compared with four different models: Chen's model, Yu's model, Huarng's model, and the ANFIS model. The results indicate that the proposed model is superior to the listing methods in terms of the root mean squared error (RMSE).  相似文献   

20.
利用我国深圳股票市场的实际数据,建立了相应的BP算法网络预测模型和ARCH(1),GARCH(1,1)预测模型,分别用来对深成指数每个周末收盘价的波动性进行预测.研究表明,BP算法对样本外观测值的上凸曲线拟合得较好,对下凸曲线的拟合效果较差;ARCH(1)和GARCH(1,1)则反之,其预测曲线对样本外观测值的下凸曲线拟合效果都较好,但对上凸曲线的拟合效果都较差.通过采用6种常用的预测误差统计量:平均误差、平均绝对误差、均方根误差、平均绝对比率误差、Akaike信息准则、Baves信息准则对样本外数据的预测结果进行检验,BP算法的预测效果最好,ARCH(1)模型次之,GARcH(1,1)模型偏差.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号