首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 194 毫秒
1.
Adam J. Byrd  K.K. Pant  Ram B. Gupta 《Fuel》2008,87(13-14):2956-2960
Supercritical water is a promising medium for the reforming of hydrocarbons and alcohols for the production of hydrogen at high pressures in a short reaction time. Water serves both as a dense solvent as well as a reactant. In this work, hydrogen is produced from glycerol by supercritical water reforming over a Ru/Al2O3 catalyst with low methane and carbon monoxide formation. Experiments were conducted in a tubular fixed-bed flow reactor over a temperature range of 700–800 °C, feed concentrations up to 40 wt% glycerol, all at short reaction time of less than 5 s. Glycerol was completely gasified to hydrogen, carbon dioxide, and methane along with small amounts of carbon monoxide. At dilute feed concentrations, near-theoretical yield of 7 mol of hydrogen/mol of glycerol was obtained, which decreases with an increase in the feed concentration. Based on a kinetic model for glycerol reforming, an activation energy of 55.9 kJ/mol was observed.  相似文献   

2.
Detailed axial temperature distribution has been studied in a two-stage process for catalytic partial oxidation of methane to syngas, which consists of two consecutive fixed bed reactors with oxygen or air separately introduced. The first stage of the reactor, packed with a combustion catalyst, is used for catalytic combustion of methane at low initial temperature. While the second stage, filled with a partial oxidation catalyst, is used for the partial oxidation of methane to syngas. A pilot-scale reactor packed with up to 80 g combustion catalyst and 80 g partial oxidation catalyst was employed. The effects of oxygen distribution in the two sections, and gas hourly space velocity (GHSV) on the catalyst bed temperature profile, as well as conversion of methane and selectivities to syngas were investigated under atmospheric pressure. It is found that both oxygen splitting ratio and GHSV have significant influence on the temperature profile in the reactor, which can be explained by the synergetic effects of the fast exothermic oxidation reactions and the slow endothermic (steam and CO2) reforming reactions. Almost no change in activity and selectivity was observed after a stability experiment for 300 h.  相似文献   

3.
A nickel catalyst (5.75 wt.%) supported on gamma-alumina was evaluated through autothermal reforming of methane (ATR). The reforming process was pointed to hydrogen production, following thermodynamic and stoichiometric predictions. The catalyst was characterised by several methods including atomic absorption spectroscopy (AAS), B.E.T.-N2, X-ray diffraction (XRD), scanning electron microscope (SEM) and thermal analyses (thermogravimetry, TG; derivate thermogravimetry, DTG; and differential thermal analysis, DTA). Experimental evaluations in a fixed-bed reactor (1023–1123 K, 1.00 bar, 150–400 cm3/min feed) presented methane conversions in the range of 40–65%. The effluent mixtures provided hydrogen yields in the range of 78–84%, carbon monoxide 3–14%, and carbon dioxide 5–18%. High molar H2/CO ratios, ranging from 8 to 90, were obtained. Operating autothermal conditions (excess of steam, 1023–1123 K, 1.00 bar) provided low coke formation and high hydrogen selectivity (81%) for methane reforming.  相似文献   

4.
《Applied Catalysis A: General》2002,223(1-2):225-238
The effect of catalyst fluidization on the conversion of methane to syngas in methane reforming with CO2 and H2O in the presence of O2 under pressurized conditions was investigated over Ni and Pt catalysts. Methane and CO2 conversion in the fluidized bed reactor was higher than those in the fixed bed reactor over Ni0.15Mg0.85O catalyst under 1.0 MPa. This reactor effect was dependent on the catalyst properties. Conversion levels in the fluidized and fixed bed reactor were almost the same over MgO-supported Ni and Pt catalysts. It is suggested that this phenomenon is related to the catalyst reducibility. On a catalyst with suitable reducibility, the oxidized catalyst can be reduced with the produced syngas and the reforming activity regenerates in the fluidized bed reactor. Although serious carbon deposition was observed on Ni0.15Mg0.85O in the fixed bed reactor, it was inhibited in the fluidized bed reactor.  相似文献   

5.
In this study, a micro-structured catalytic hollow fiber membrane reactor (CHFMR) has been prepared, characterized and evaluated for performing steam methane reforming (SMR) reaction, using Rh/CeO2 as the catalyst and a palladium membrane for separating hydrogen from the reaction. Preliminary studies on a catalytic hollow fiber (CHF), a porous membrane reactor configuration without the palladium membrane, revealed that stable methane conversions reaching equilibrium values can be achieved, using approximately 36 mg of 2 wt.%Rh/CeO2 catalyst incorporated inside the micro-channels of alumina hollow fibre substrates (around 7 cm long in the reaction zone). This proves the advantages of efficiently utilizing catalysts in such a way, such as significantly reduced external mass transfer resistance when compared with conventional packed bed reactors. It is interesting to observe catalyst deactivation in CHF when the quantity of catalyst incorporated is less than 36 mg, although the Rh/CeO2 catalyst supposes to be quite resistant against carbon formation. The “shift” phenomenon expected in CHFMR was not observed by using 100 mg of 2 wt.%Rh/CeO2 catalyst, mainly due to the less desired catalyst packing at the presence of the dense Pd separating layer. Problems of this type were solved by using 100 mg of 4 wt.% Rh/CeO2 as the catalyst in CHFMR, resulting in methane conversion surpassing the equilibrium conversions and no detectable deactivation of the catalyst. As a result, the improved methodology of incorporating catalyst into the micro-channels of CHFMR is the key to a more efficient membrane reactor design of this type, for both the SMR in this study and the other catalytic reforming reactions.  相似文献   

6.
A novel dual-membrane reactor concept was introduced for integrating the oxidative coupling of methane (OCM) and CO2 methane reforming (dry reforming) reactors. The OCM reactions occur in a conventional porous packed bed membrane reactor structure and a portion of the undesired produced CO2 and generated heat are transferred through a molten-carbonate perm-selective membrane and consumed in the adjacent dry methane reforming catalytic bed. This integrated reactor provides a very promising thermal performance by controlling the temperature peak to be below 50 °C in reference to the average operating temperature in the OCM section. This was achieved even for the low methane-to-oxygen ratio 2 by introducing 10% CO2 as the diluent agent and reactant in this integrated reactor structure. This contributed to the improved selective performance of 32% methane conversion and 25% C2-yield including 21% C2H4-yield in the OCM section which also enhances the performance of the downstream units consequently. Around half of the unconverted methane leaving the OCM section was converted to syngas in the DRM section.The dual-membrane reactor alone can utilize a significant amount of the carbon dioxide generated in the OCM catalytic bed. In combination with adsorption unit in the downstream of the integrated process, 90% of the produced CO2 can be recovered and further converted to valuable syngas products. The experimental data, obtained from a mini-plant scale experimental facility, were exploited to verify the performance of the OCM reactor and the CO2 separation section.  相似文献   

7.
Gasification of glucose in near- and supercritical water was investigated at temperature and pressure ranges from 400 to 600 °C and 20 to 42.5 MPa with a reaction time of 1 h. Hydrothermal gasification of glucose was performed in the absence and presence of catalyst (K2CO3) in a batch reactor. The influences of temperature and pressure in the supercritical regimes of water, catalyst were examined in relation to the yield and composition of the gases and aqueous products. The product gases were analyzed by gas chromatography, and the aqueous products were analyzed by high performance liquid chromatography. The gases produced were carbon dioxide, methane, hydrogen, carbon monoxide, and C2–C4 hydrocarbons and there was significant production of aqueous products and residue. The aqueous products composed of oxygenated compounds, including carboxylic acids (glycolic acid, formic acid, acetic acid), furfurals (furfural, 5-hydroxymethyl furfural, 5-methyl furfural), phenols (phenol, methyl phenols, hydroxy phenols, methoxy phenols), aldehydes (formaldehyde, acetaldehyde, acetone, propionaldehyde), ketones (3-methyl-2-cyclo-pentene-1-one, 2-cyclo-pentene-1-one) and their alkylated derivatives. Carbon gasification efficiencies were improved by addition of K2CO3 into the reacting system. Carbon gasification efficiency reached maximum (94%) at 600 °C and 20 MPa. The yield of hydrogen among gaseous products increased with increasing temperature and decreasing pressure.  相似文献   

8.
《Fuel》2006,85(12-13):1631-1641
Chemical-looping reforming is a technology that can be used for partial oxidation and steam reforming of hydrocarbon fuels. This paper describes continuous chemical-looping reforming of natural gas in a laboratory reactor consisting of two interconnected fluidized beds. Particles composed of 60 wt% NiO and 40 wt% MgAl2O4 are used as bed material, oxygen carrier and reformer catalyst. There is a continuous circulation of particles between the reactors. In the fuel reactor, the particles are reduced by the fuel, which in turn is partially oxidized to H2, CO, CO2 and H2O. In the air reactor the reduced oxygen carrier is reoxidized with air. Complete conversion of natural gas was achieved and the selectivity towards H2 and CO was high. In total, 41 h of reforming were recorded. Formation of solid carbon was noticed for some cases. Adding 25 vol% steam to the natural gas reduced or eliminated the carbon formation.  相似文献   

9.
The reactivity of various gases, namely; O2, air, CO2, H2 and N2, with carbon deposited on alumina-supported Co–Ni catalyst during propane reforming in a fluidized bed reactor at 773–973 K using relatively low feed steam:carbon ratio (0.8–1.5) has been investigated in a thermogravimetric analysis unit. Analysis of the transient solid weight loss revealed that carbon removal mechanism is dependent on the type of gasifying agent. Carbon gasification kinetics using O2 and air followed the Avrami-Erofeev (A2) model while data for both CO2 and H2 were captured by the geometrical (contracting area, R2) model. However, carbon gasification with inert N2 proceeded at much slower rate (about 10 times lower than air) and was adequately fitted by the one-dimensional diffusion (D1) model. Specific reaction rates from these phenomenological models were also linearly correlated with the catalyst carbon content with reactivity coefficient of the gasifying agent decreasing in the order, O2 > air > CO2 > H2 > N2. In order to minimize energy consumption during catalyst regeneration, reduce greenhouse gas emissions and reduce catalyst sintering, it would be desirable to employ a mixture of air and CO2 as the carbon gasifying agent to take advantage of the coupled exothermic (air oxidation) and endothermic (reverse Boudouard reaction involving CO2 and carbon) nature taking place during the carbon removal operation.  相似文献   

10.
The effect of different preparation methods on the physicochemical property, reforming reactivity, stability and carbon deposition resistance of cobalt/carbon catalyst was investigated through fixed bed flow reaction. The catalysts were prepared by the impregnation and characterized by the XRD and scanning electron microscopy (SEM). The result indicated that the active components of cobalt/carbon catalyst prepared by using ultrasonic wave distributed evenly, activity was high and the loading time was short. The Co/Carbon catalyst prepared by incipient-wetness impregnation, 10 wt% loading and 300 °C calcination, achieved the best activity. Furthermore, the effect of reaction temperature, air speed and CH4/CO2 ratio on the catalyst activity and CO/H2 ratio in products was investigated. It was found that the conversion of CO2 and CH4 increased with the increasing of reaction temperature. However, the conversion of CO2 and CH4 increased first and then decreased with the increasing of air speed. With the increasing of CH4/CO2 in feed gas, both the catalyst activity and the CO/H2 ratio in products decreased.  相似文献   

11.
《Fuel》2002,81(11-12):1605-1609
Dimethyl ether (DME), the target product of this study, has many advantages as diesel fuel. The aim of this study is to develop a catalytic process in which 90% CO conversion to DME and CO2 from syngas (3CO+3H2→DME+CO2) is attained at 1–3 MPa. In such a process, both recycling loop and compression of syngas can be omitted resulting in an economic process based on unused, dispersed and small-scale carbon resources. To overcome the equilibrium conversion limit we designed temperature-gradient reactor (TGR). In TGR, the temperature of the catalyst bed decreases along with the down flow of reaction gas. The performance of the catalyst in TGR was much higher than that in a conventional isothermal fixed bed reactor. For example, 90% CO conversion and high STY (1.1 kg MeOH eqiv./kg cat./h) was attained at the same time in TGR at 550–510 K, 3 MPa.  相似文献   

12.
《Catalysis communications》2007,8(11):1588-1594
Oxidative steam reforming of ethanol over an Ir/CeO2 catalyst was investigated. Ethanol dehydrogenation to acetaldehyde and decomposition to methane and carbon monoxide were the primary reactions at low temperatures, and complete reforming of ethanol was achieved at 773 K with hydrogen, carbon oxides and methane as the only products in the outlet stream. More importantly, stability test revealed that the Ir/CeO2 catalyst could show rather stable catalytic performance for 60 h time-on-stream without deactivation. The improvement was attributed to the effective prevention of the sintering of the highly dispersed Ir particles through the strong interaction between Ir and CeO2 and to the significant resistance to coke deposition due to the higher oxygen storage-release capacity of ceria.  相似文献   

13.
The performance of three integrated micro packed bed reactor-heat exchangers (IMPBRHEs) for direct DME synthesis over physical mixtures of CuO–ZnO–Al2O3 and γ-Al2O3 catalysts was experimentally investigated. Systematic variations in reactor and slit dimensions and configuration were analyzed in terms of thermal behaviour, mass transfer, pressure drop and residence time distribution (RTD). The pressure drop was always small (<0.12 bar) relative to the total pressure (50 bar), and linear dependence with GHSV confirms the predicted laminar flow for Re = 0.1–2. A narrow RTD was estimated by the dispersion analysis. Careful temperature measurements confirmed that the reaction temperature is mainly controlled by the oil heat exchange to give a practically uniform temperature profile for set inlet oil temperatures of 220–320 °C. The micro packed beds were found free of the internal as well as external mass transfer limitations, as showed by no significant change in the CO conversion and DME yield for different catalyst particle sizes, no effect of varying the linear gas velocity, and no effect of manipulating reactant diffusion coefficient. Packed bed microstructured reactors hence provide an isobaric and isothermal environment free from transport limitations for the direct DME synthesis, in the kinetic regime as well as at equilibrium conversion.  相似文献   

14.
Carbon dioxide reforming of methane was performed over Co–Ru–Zr catalyst (0.4 wt% Ru added, calcined at 400 °C) with different supports (SiO2, γ-Al2O3 and MgO) in order to study their deactivation. The Co–Ru–Zr/γ-Al2O3 showed the highest activity at first, but severe deactivation was observed due to carbon deposition. Co–Ru–Zr/MgO exhibited low activity because of its low specific surface area. However, the high conversions could be obtained in Co–Ru–Zr/SiO2, and activity was kept almost constantly for 500 h reaction. The characteristics of the catalysts, before and after the reaction, were investigated employing BET, XRD, TPR, TGA-DTA and TEM.  相似文献   

15.
Six-carbon containing model compounds of 1-hexanol, 1,6-hexanediol and sorbitol for the reforming were employed to study the effect of hydroxyl functional group on the thermodynamic equilibrium product distribution in a wide range of conditions of temperature (300–1300 K), pressure (1–150 atm) and feed composition (H2O/carbon = 0.5–30). The increase of hydroxyl group in reactants gave rise to the increase of carbon dioxide with loss of methane in the product in the following order: sorbitol > 1,6-hexanediol > 1-hexanol, while the formation of hydrogen and carbon monoxide was mostly governed by the feed composition (H2O/carbon) and pressure rather than the number of hydroxyl group in reactants.  相似文献   

16.
《Fuel》2006,85(12-13):1708-1713
Ni–La and Ni–La–K catalysts supported on cordierite were prepared for steam reforming of kerosene to produce hydrogen. All these catalysts were tested in a fixed-bed reactor under different conditions. The catalysts obtained under different calcination temperatures and different reaction temperatures were characterized by TG–DTG and XRD techniques respectively. The influence of NiO and La2O3 contents on the activity of catalysts for steam reforming of kerosene to produce hydrogen was also investigated in our experiments. The experimental results indicate that the calcination temperature has much more influence on catalyst activity. The catalyst supported the promoter 5 wt% K2O, 25 wt% NiO and 10 wt% La2O3, is the optimal catalyst under 773 K of reaction temperature and 2300 h−1 of space velocity. Composition of Ni is highly dispersed on the catalyst surface. And through the duration test, the catalyst activity and stability are very satisfactory at 873 K of the reaction temperature.  相似文献   

17.
《Catalysis Today》2001,64(1-2):31-41
Mechanisms of partial oxidation of methane to synthesis gas were studied using a pulsed reaction technique and temperature jump measurement. Catalyst bed temperatures were directly measured by introducing 1 and 3 ml pulses of a mixture of CH4 and O2 (2/1). With Ir, Pt and Ni/TiO2 catalysts, a sudden temperature increase at the front edge of the catalyst bed was observed upon introduction of the pulse. The synthesis gas production basically proceeded via two-step paths consisting of highly exothermic complete methane oxidation to give H2O and CO2, followed by the endothermic reforming of methane with H2O and CO2. In contrast, with the Rh and Pd/TiO2 catalysts, the temperature at the front edge of the catalyst bed decreased upon introduction of the CH4/O2 (2/1) pulse and a small increase in the temperature at the rear end was observed. Initially, the endothermic decomposition of CH4 to H2 and deposited carbon or CHx probably took place at the front edge of the catalyst bed, after which the deposited carbon or generated CHx species would be oxidized into COx. When the Ru/TiO2 catalyst was used, a temperature increase at the front edge of the catalyst bed was observed upon introduction of the 3 ml pulse of CH4/O2. In contrast, the temperature drop at the front edge of the catalyst bed was observed for a 1 ml pulse of CH4/O2. These results seemed to exhibit two possibilities for a synthesis gas formation route over the Ru/TiO2 catalyst. The reaction pathway of the partial oxidation of methane with group VIII metal-loaded catalysts depended strongly upon the metal species and reaction conditions.  相似文献   

18.
Ceria–zirconia mixed oxides (CeZr) were glycol-thermally synthesised as nano-crystalline supports with tunable ratios for the anchoring of nickel–cobalt (Ni–Co) catalyst to enhance methane dry reforming (MDR) reaction with carbon dioxide. High conversion of methane (90%) and carbon dioxide (92%), good output (H2 = 32%; CO = 44%), and selectivity and stability of syngas prove the effectiveness of the catalyst deposited on this support. 80:20 for Ce:Zr was identified as the optimal ratio to attain active and stable catalytic performance in MDR, with a low coking content of 0.47 wt.%.  相似文献   

19.
Dual bed catalysts were found to produce high yields (>85%) of hydrogen from methane and air in a millisecond contact time reactor. The dual bed catalyst consisted of a 5 mm platinum combustion catalyst followed by a 5 mm nickel steam reforming catalyst. The platinum catalyst was used to totally oxidize approximately one-quarter of the methane feed to carbon dioxide and water. In the nickel catalyst, the carbon dioxide and water reformed the remaining methane to hydrogen and carbon monoxide. This process is favored at high flow rates, because the heat generated in the platinum catalyst is convected to the nickel catalyst at a higher rate. The heat delivered to the nickel catalyst favors the endothermic reforming reactions that generate the hydrogen and carbon monoxide.  相似文献   

20.
A fluidized bed reactor, used for methanol to gasoline (MTG), was designed followed the theory of gas–solid two-phase flow, and the effects of some factors, such as temperature, space velocity and the regeneration process, on the performance of MTG catalyst were systematically examined. The results show that: heat and mass transfer can be effectively conducted in the fluidized bed reactor; with the reaction temperature was increased, the methanol conversion rate maintained at 100% and the yield of gasoline gradually increased, then reached its highest value of 25.22% at 410 °C, after that it began to decline; and the C5 aromatics content increased with temperature and reached its maximum value of 49.86% at 430 °C. With the weight space velocity was increased, the yield of gasoline firstly increased and then decreased, while the C5 aromatics content was decreased; In addition, the effect of inner-regenerated process for used catalyst is very good. Low temperature can help to generate lighter olefin polymer, the higher extent of hydrogen transfer and cracking of large molecules at middle temperature, the carbon deposition reaction and aromatization reaction of low carbon olefin occurred at higher temperature, all of these contributed the above mentioned rules. While the weight space velocity acts on the performance of catalyst mainly via influencing the contact time and the carbon deposition reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号