首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Effect of temperatures ranging from 20 °C to 55 °C on fermentative hydrogen production by mixed cultures was investigated in batch tests. The experimental results showed that, at initial pH 7.0, during the fermentative hydrogen production using glucose as substrate, the substrate degradation efficiency and hydrogen production potential increased with increasing temperatures from 20 °C to 40 °C. The maximal substrate degradation efficiency was 98.1%, the maximal hydrogen production potential was 269.9 mL, the maximal hydrogen yield was 275.1 mL/g glucose and the shortest lag time was 7.0 h. The temperature for fermentative hydrogen production by mixed cultures was optimized to be 40 °C. The expanded Ratkowsky models could be used to describe the effect of temperatures on the hydrogen production potential, maximum hydrogen production rate and the lag time during fermentative hydrogen production.  相似文献   

2.
In order to harvest high-efficient hydrogen producing seeds, five pretreatment methods (including acid, heat, sonication, aeration and freeze/thawing) were performed on anaerobic digested sludge (AS) which was collected from a batch anaerobic reactor for treating organic fraction of municipal solid waste. The hydrogen production tests were conducted in serum bottles containing 20 gVS/L (24.8 g COD/L) mixture of rice and lettuce powder at 37 °C. The experimental results showed that the heat and acid pretreatment completely repressed the methanogenic activity of AS, but acid pretreatment also partially repressed hydrogen production. Sonication, freeze/thawing and aeration did not completely suppress the methanogen activity. The highest hydrogen yields were 119.7, 42.2, 26.0, 23.0, 22.7 and 22.1 mL/gVS for heated, acidified, freeze/thawed, aerated, sonicated and control AS respectively. A pH of about 4.9 was detected at the end of hydrogen producing fermentation for all tests. The selection of an initial pH can markedly affect the hydrogen producing ability for heated and acidified AS. The higher initial pH generated higher hydrogen yield and the highest hydrogen yield was obtained with initial pH 8.9 for heated AS.  相似文献   

3.
Batch experiment results showed that hydrogen production from rice slurry was found most effective at pH 4.5, 37 °C treating a slurry containing 5.5 g-carbohydrate/L. An anaerobic digester sludge was used as seed after a 100 °C heat treatment for 30 min. After a 36 h acclimation period, the sludge had a maximum specific hydrogen production rate of 2.1 L/(g-VSS d) and a hydrogen yield of 346 mL/g-carbohydrate, corresponding to 62.6% of stoichiometric yield. The effluent was composed mostly of acetate (28.3–43.0%) and butyrate (51.4–70.9%). Based on the 16S rDNA analysis, the 28 clones developed from this acidophilic hydrogen-producing sludge may be classified into nine OTUs, all of which are affiliated with the genus Clostridium. Phylogenetic analysis shows that eight OTUs (96.4% of population) form a distinct group with Clostridium sp. 44a-T5zd. Results indicate the acidophilic hydrogen-producing bacteria found in this study are unknown, and warrant further studies.  相似文献   

4.
The effect of temperature, initial pH and glucose concentration on fermentative hydrogen production by mixed cultures was investigated in batch tests, and the optimization of fermentative hydrogen production process was conducted by response surface methodology with a central composite design. Experimental results showed that temperatures, initial pH and glucose concentrations had impact on fermentative hydrogen production individually and interactively. The maximum hydrogen yield of 289.8 mL/g glucose was estimated at the temperature of 38.6 °C, the initial pH of 7.2 and the glucose concentration of 23.9 g/L. The maximum hydrogen production rate of 28.2 mL/h was estimated at the temperature of 37.8 °C, the initial pH of 7.2 and the glucose concentration of 27.6 g/L. The maximum substrate degradation efficiency of 96.9% was estimated at the temperature of 39.3 °C, the initial pH of 7.0 and the glucose concentration of 26.8 g/L. Response surface methodology was a better method to optimize the fermentative hydrogen production process. Modified logistic model could describe the progress of cumulative hydrogen production in the batch tests of this study successfully.  相似文献   

5.
The inhibitory effect of added ethanol, acetic acid, propionic acid and butyric acid on fermentative hydrogen production by mixed cultures was investigated in batch tests using glucose as substrate. The experimental results showed that, at 35 °C and initial pH 7.0, during the fermentative hydrogen production, the substrate degradation efficiency, hydrogen production potential, hydrogen yield and hydrogen production rate all trended to decrease with increasing added ethanol, acetic acid, propionic acid and butyric acid concentration from 0 to 300 mmol/L. The inhibitory effect of added ethanol on fermentative hydrogen production was smaller than those of added acetic acid, propionic acid and butyric acid. The modified Han–Levenspiel model could describe the inhibitory effects of added ethanol, acetic acid, propionic acid and butyric acid on fermentative hydrogen production rate in this study successfully. The modified Logistic model could describe the progress of cumulative hydrogen production.  相似文献   

6.
A fractional factorial design was carried out to investigate the effects of temperature, initial pH and glucose concentration on fermentative hydrogen production by mixed cultures in batch tests and then the experimental data of substrate degradation efficiency, hydrogen yield and average hydrogen production rate were described by a neural network, based on which the simultaneous optimization of the three responses was performed by the method of desirability function. The analysis showed that the neural network could successfully describe the effects of temperature, initial pH and glucose concentration on the substrate degradation efficiency, hydrogen yield and average hydrogen production rate of this study. The maximum substrate degradation efficiency of 95.3%, hydrogen yield of 305.3 mL/g glucose and average hydrogen production rate of 23.9 mL/h were all obtained at the optimal temperature of 39.0 °C, initial pH of 7.0 and glucose concentration of 24.6 g/L identified by the method of desirability function based on a neural network. In sum, the method of desirability function based on a neural network was a useful tool to optimize several responses for fermentative hydrogen production processes simultaneously.  相似文献   

7.
Dark fermentative bacterial strains were isolated from riverbed sediments and investigated for hydrogen production. A series of batch experiments were conducted to study the effect of pH, substrate concentration and temperature on hydrogen production from a selected bacterial consortium, TERI BH05. Batch experiments for fermentative conversion of sucrose, starch, glucose, fructose, and xylose indicated that TERI BH05 effectively utilized all the five sugars to produce fermentative hydrogen. Glucose was the most preferred carbon source indicating highest hydrogen yields of 22.3 mmol/L. Acetic and butyric acid were the major soluble metabolites detected. Investigation on optimization of pH, temperature, and substrate concentration revealed that TERI BH05 produced maximum hydrogen at 37 °C, pH 6 with 8 g/L of glucose supplementation and maximum yield of hydrogen production observed was 2.0–2.3 mol H2/mol glucose. Characterization of TERI BH05 revealed the presence of two different bacterial strains showing maximum homology to Clostridium butyricum and Clostridium bifermentans.  相似文献   

8.
Klebsiella pneumoniae ECU-15 (EU360791), which was isolated from anaerobic sewage sludge, was investigated in this paper for its characteristics of fermentative hydrogen production. It was found that the anaerobic condition favored hydrogen production than that of the micro-aerobic condition. Culture temperature and pH of 37 °C and 6.0 were the most favorable for the hydrogen production. The strain could grow in several kinds of monosaccharide and disaccharide, as well as the complicated corn stalk hydrolysate, with the best results exhibited in glucose. The maximum hydrogen production rate and yield of 482 ml/l/h and 2.07 mol/mol glucose were obtained at initial glucose concentration of 30 g/L and 5 g/L, respectively. Fermentation results in the diluent corn stalk hydrolysate showed that cell growth was not inhibited. However, the hydrogen production of 0.65 V/V was relatively lower than that of the glucose (1.11 V/V), which was mainly due to the interaction between xylose and glucose.  相似文献   

9.
Optimization of biogas production from wheat straw stillage in UASB reactor   总被引:1,自引:0,他引:1  
In the present study, thermophilic anaerobic digestion of wheat straw stillage was investigated. Methane potential of stillage was determined in batch experiments at two different substrate concentrations. Results showed that higher methane yields of 324 ml/g-(volatile solids) VSadded were obtained at stillage concentrations of 12.8 g-VS/L than at 25.6 g-VS/l. Continuous anaerobic digestion of stillage was performed in an up-flow anaerobic sludge blanket (UASB) reactor at 55 °C with 2 days hydraulic retention time. Results showed that both substrate concentration and organic loading rate (OLR) influenced process performance and methane yields. Maximum methane yield of 155 ml CH4/g-COD was obtained at stillage mixtures with water of 25% (v/v) in the feed and at an OLR of 17.1 g-COD/(l.d). Soluble chemical oxygen demand (SCOD) removal at this OLR was 76% (w/w). Increase in OLR to 41.2 g-COD/(l.d) and/or stillage concentration in the feed to 33–50% (v/v) resulted in low methane yields or complete process failure. The results showed that thermophilic anaerobic digestion of wheat straw stillage alone for methane production is feasible in UASB reactor at an OLR of 17.1 g-COD/(l.d) and at substrate concentration of 25% in the feed. The produced methane could improve the process energy and economics of a bioethanol plant and also enable to utilize the stillage in a sustainable manner.  相似文献   

10.
The aim of the work was to compare two different biological methods for hydrogen production: fermentative and photosynthetic based upon the modality of batch cultures. For testing of fermentative bio-hydrogen production four mixed cultures representing anaerobic microorganisms (dominant strain Clostridium) were selected. The kinetic parameters on the intensity of bio-hydrogen production were established. The efficiency coefficient of transformation ranged from 1.65 mol H2/mol glucose in the pectin culture up to 2.45 in the mixed culture. The bio-hydrogen concentration never exceeded 30%. The carbon dioxide was produced in a ratio of CO2 to H2 (0.5–0.67)/1. The testing of green algae proved that the most effective was the algae species Scenedesmus. High bio-hydrogen purity was analytically verified. The fermentative method of H2 production is more efficient; it does not need light, has a longer efficiency of one charge and enables effective use of different biological wastes.  相似文献   

11.
The effect of different food to microorganism ratios (F/M) (1–10) on the hydrogen production from the anaerobic batch fermentation of mixed food waste was studied at two temperatures, 35 ± 2 °C and 50 ± 2 °C. Anaerobic sludge taken from anaerobic reactors was used as inoculum. It was found that hydrogen was produced mainly during the first 44 h of fermentation. The F/M between 7 and 10 was found to be appropriate for hydrogen production via thermophilic fermentation with the highest yield of 57 ml-H2/g VS at an F/M of 7. Under mesophilic conditions, hydrogen was produced at a lower level and in a narrower range of F/Ms, with the highest yield of 39 ml-H2/g VS at the F/M of 6. A modified Gompertz equation adequately (R2 > 0.946) described the cumulative hydrogen production yields. This study provides a novel strategy for controlling the conditions for production of hydrogen from food waste via anaerobic fermentation.  相似文献   

12.
Batch tests were conducted to evaluate the enhancement of hydrogen/ethanol (EtOH) productivity using cow dung microflora to ferment α-cellulose and saccharification products (glucose and xylose). Hydrogen/ethanol production was evaluated based on hydrogen/ethanol yields (HY/EY) under 55 °C at various initial pH conditions (5.5–9.0). Our test results indicate that cow dung sludge is a good mixed natural-microflora seed source for producing biohydrogen/ethanol from cellulose and xylose. The heat-pretreatment, commonly used to produce hydrogen more efficiently from hexose, applied to mixed anaerobic cultures did not help cow dung culture convert cellulose and xylose into hydrogen/ethanol. Instead of heat-pretreatment, the mixed culture received enrichments cultivated at 55 °C for 4 days. Positive results were observed: hydrogen/ethanol production from fermenting cellulose and xylose was effectively enhanced at increases of 4.8 (ethanol) to 8 (hydrogen) and 2.4 (ethanol) to 15.6 (hydrogen) folds, respectively. In which, the ethanol concentration produced from xylose reached 4–4.4 g/L, an output comparable to that of using heat-treated sewage sludge and better than that (1.25–3 g/L) using pure cultures. Our test results show that for the enriched cultures the initial cultivation pH can affect hydrogen/ethanol production including HY, EY and liquid fermentation product concentration and distribution. These results were also concurred using a denaturing gradient gel electrophoresis analysis saying that both cultivation pH and substrate can affect the enriched cow dung culture microbial communities. The enriched cow dung culture had an optimal initial cultivation pH range of 7.6–8.0 with peak HY/EY values of 2.8 mmol-H2/g-cellulose, 5.8 mmol-EtOH/g-cellulose, 0.3 mol-H2/mol-xylose and 1 mol-EtOH/mol-xylose. However, a pH change of 0.5 units from the optimal values reduced hydrogen/ethanol production efficiency by 20%. Strategies based on the experimental results for optimal hydrogen/ethanol production from cellulose and xylose using cow dung microflora are proposed.  相似文献   

13.
This study reports a fermentative hydrogen production by Escherichia coli using cheese whey as substrate. To improve the biohydrogen production, an E. coli ΔhycA ΔlacI strain (WDHL) was constructed. The absence of hycA and lacI genes had a positive effect on the biohydrogen production. The strain produced 22% more biohydrogen in a shorter time than the wild-type (WT) strain. A Box-Behnken experimental design was used to optimize pH, temperature and substrate concentration. The optimal initial conditions for biohydrogen production by WDHL strain were pH 7.5, 37 °C and 20 g/L of cheese whey. The specific production rate was improved from 3.29 mL H2/optical density at 600 nm (OD600nm) unit-h produced by WDHL under non-optimal conditions to 5.88 mL H2/OD600nm unit-h under optimal conditions. Using optimal initial conditions, galactose can be metabolized by WDHL strain. The maximum yield obtained was 2.74 mol H2/mol lactose consumed, which is comparable with the yield reached in other hydrogen production processes with Clostridium sp. or mixed cultures.  相似文献   

14.
Batch and continuous tests were conducted to evaluate fermentative hydrogen production from starch (at a concentration of chemical oxygen demand (COD) 20 g/L) at 35 °C by a natural mixed culture of paper mill wastewater treatment sludge. The optimal initial cultivation pH (tested range 5–7) and substrate concentration (tested range 5–60-gCOD/L) were evaluated by batch reactors while the effects of hydraulic retention time (HRT) on hydrogen production, as expressed by hydrogen yield (HY) and hydrogen production rate (HPR), were evaluated by continuous tests. The experimental results indicate that the initial cultivation pH markedly affected HY, maximum HPR, liquid fermentation product concentration and distribution, butyrate/acetate concentration ratio and metabolic pathway. The optimal initial cultivation pH was 5.5 with peak values of HY 1.1 mol-H2/mol-hexose maximum HPR 10.4 mmol-H2/L/h and butyrate concentration 7700 mg-COD/L. In continuous hydrogen fermentation, the optimal HRT was 4 h with peak HY of 1.5 mol-H2/mol-hexose, peak HPR of 450 mmol-H2/L/d and lowest butyrate concentration of 3000 mg-COD/L. The HPR obtained was 280% higher than reported values. A shift in dominant hydrogen-producing microbial population along with HRT variation was observed with Clostridium butyricum, C. pasteurianum, Klebshilla pneumoniae, Streptococcus sp., and Pseudomonas sp. being present at efficient hydrogen production at the HRTs of 4–6 h. Strategies based on the experimental results for optimal hydrogen production from starch are proposed.  相似文献   

15.
This study investigated the effect of pre-treatment and hydraulic retention time (HRT) on biohydrogen production from organic wastes. Various pre-treatments including thermal, base, acid, ultrasonication, and hydrogen peroxide were applied alone or in combination to enhance biohydrogen production from potato and bean wastewater in batch tests. All the pre-treated samples showed higher hydrogen production than the control tests. Hydrogen peroxide pre-treatment achieved the best results of 939.7 and 470 mL for potato and bean wastewater, respectively. Continuous biohydrogen production from sucrose, potato and bean wastewater was significantly influenced by reducing the HRT as 24, 18 and 12 h. Sucrose and potato showed similar behavior, where the hydrogen production rate (HPR) increased with decreasing the HRT. Optimum hydrogen yield results of 320 mL-H2/g-VS (sucrose) and 150 mL-H2/g-VS (potato) were achieved at HRT of 18 h. Bean wastewater showed optimum HPR of 0.65 L/L.d with hydrogen yield of 80 mL-H2/g-VS at 24 h HRT.  相似文献   

16.
The patent-pending integrated waste-to-energy system comprises both a novel biohydrogen reactor with a gravity settler (Biohydrogenator), followed by a second stage conventional anaerobic digester for the production of methane gas. This chemical-free process has been tested with a synthetic wastewater/leachate solution, and was operated at 37 °C for 45 d. The biohydrogenator (system (A), stage 1) steadily produced hydrogen with no methane during the experimental period. The maximum hydrogen yield was 400 mL H2/g glucose with an average of 345 mL H2/g glucose, as compared to 141 and 118 mL H2/g glucose for two consecutive runs done in parallel using a conventional continuously stirred tank reactor (CSTR, System (B)). Decoupling of the solids retention time (SRT) from the hydraulic retention time (HRT) using the gravity settler showed a marked improvement in performance, with the maximum and average hydrogen production rates in system (A) of 22 and 19 L H2/d, as compared with 2–7 L H2/d in the CSTR resulting in a maximum yield of 2.8 mol H2/mol glucose much higher than the 1.1–1.3 mol H2/mol glucose observed in the CSTR. Furthermore, while the CSTR collapsed in 10–15 d due to biomass washout, the biohydrogenator continued stable operation for the 45 d reported here and beyond. The methane yield for the second stage in system (A) approached a maximum value of 426 mL CH4/gCOD removed, while an overall chemical oxygen demand (COD) removal efficiency of 94% was achieved in system (A).  相似文献   

17.
Hydrogen production from household solid waste (HSW) was performed via dark fermentation by using an extreme-thermophilic mixed culture, and the effect of pH and acetate on the biohydrogen production was investigated. The highest hydrogen production yield was 257 ± 25 mL/gVSadded at the optimum pH of 7.0. Acetate was proved to be inhibiting the dark fermentation process at neutral pH, which indicates that the inhibition was caused by total acetate concentration not by undissociated acetate. Initial inhibition was detected at acetate concentration of 50 mM, while the hydrogen fermentation was seriously inhibited at acetate concentration of 200 mM. At 200 mM acetate concentration, the hydrogen yield was 36 ± 25 mL/gVSadded, which was almost 7 times lower than the yield of 254 ± 13 mL/gVSadded, which was achieved at lower acetate concentration (5–25 mM). Additional to the negative effect on the hydrogen yield, acetate was resulting in the longer lag phase during batch fermentations. The lag phase was more than 100 h at acetate concentration of more than 150 mM, while it was only 3–4 h at 5–25 mM acetate.  相似文献   

18.
Liquid swine manure supplemented with glucose (10 g/L) was used as substrate for hydrogen production using an anaerobic sequencing batch reactor at 37 ± 1 °C and pH 5.0 under different hydraulic retention times (HRTs). Decreasing HRT from 24 to 8 h caused an increasing hydrogen production rate from 0.05 to 0.15 L/h/L. Production rates of both total biogas and hydrogen were linearly correlated to HRT with R2 being 0.993 and 0.997, respectively. The hydrogen yield ranged between 1.18 and 1.63 mol-H2/mol glucose and the 12 h HRT was preferred for high production rate and efficient yield. For all the five HRTs examined, the glucose utilization efficiency was over 98%. The biogas mainly consisted of carbon dioxide and hydrogen (up to 43%) with no methane detected throughout the experiment. Ethanol and organic acids were the major aqueous metabolites produced during fermentation, with acetic acid accounting for 56–58%. The hydrogen yield was found to be related to the acetate/butyrate ratio.  相似文献   

19.
An investigation of biological hydrogen production from glucose by Clostridium beijerinckii was conducted in a synthetic wastewater solution. A study examining the effect of initial pH (range 5.7–6.5) and substrate loading (range 1–3 g COD/L) on the specific conversion and hydrogen production rate has shown interaction behaviour between the two independent variables. Highest conversion of 10.3 mL H2/(g COD/L) was achieved at pH of 6.1 and glucose concentration of 3 g COD/L, whereas the highest production rate of 71 mL H2/(h L) was measured at pH 6.3 and substrate loading of 2.5 g COD/L. In general, there appears to be a strong trend of increasing hydrogen production rate with an increase in both substrate concentration and pH. Butyrate (14–63%), formate (10–45%) and ethanol (16–40%) were the main soluble products with other volatile fatty acids and alcohols present in smaller quantities.  相似文献   

20.
Rice straw was pretreated by microwave-assisted alkali to improve saccharification in enzymatic hydrolysis and hydrogen yield in combined dark- and photo-fermentation in this paper. A maximum reducing sugar yield of 69.3 g/100 g TVS was obtained when 50 g/l rice straw was pretreated by microwave heating for 15 min at 140 °C in 0.5% NaOH solution and then enzymatically hydrolyzed for 96 h. When hydrolyzed rice straw was used for hydrogen production by anaerobic bacteria in dark-fermentation, a maximum hydrogen yield of 155 ml/g TVS was obtained. The residual solution (mainly acetate and butyrate) from dark-fermentation was reutilized for hydrogen production by immobilized photosynthetic bacteria in photo-fermentation. By combination of dark- and photo-fermentation, the maximum hydrogen yield was greatly enhanced to 463 ml/g TVS, which is 43.2% of the theoretical hydrogen yield.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号