首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the present work, the effect of the hydrogen and the air temperature values on the temperature distribution in a Planar Solid Oxide Fuel Cell is studied by the aid of a two-dimensional mathematical model. Two different configurations of the Solid Oxide Fuel Cells are examined: i) the Anode Supported Planar Solid Oxide Fuel Cell (ASP_SOFC) and ii) the Electrolyte Supported Planar Solid Oxide Fuel Cell (ESP_SOFC). In order to describe the temperature distribution within the SOFC, the coupling of the mass and energy transport phenomena along with the electrochemistry is required. The studied parameters are: a) the hydrogen and the air temperature values and b) the geometry configurations. The complex system of the governing equations is numerically solved with the finite differences method and the calculation of the temperature distribution within each domain of the SOFCs is calculated via the 2-D mathematical model processed by FORTRAN language. Finally, the mathematical model predictions for the temperature distribution under the influence of the studied parameters are thoroughly discussed.  相似文献   

2.
Under mild conditions (near-neutral aqueous solutions, room temperature, and atmospheric pressure), an attractive electrolyte was expanded for splitting water and three novel oxygen-evolution catalysts (Co-Ci, Ni-Ci, Ag-Ci) were generated. The Co-Ci catalyst showed a high oxygen-evolution rate (24.42 μmol h−1), a low oxygen-evolution overpotential (395 mV) and excellent stability. In addition, the non-amorphous Ag-Ci catalyst, different from reported catalyst, was generated. The catalyst has been further characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive spectrometry (EDS), and X-ray photoelectron spectroscopy (XPS).  相似文献   

3.
In the present work the effect of the chemical reaction on the temperature field in an anode supported planar SOFC is numerically studied by the aid of a two-dimensional mathematical model. For the model development the mass transport phenomena, the energy conservation, the species flow governed by Darcy’s law and the electrochemistry are coupled. The finite difference method is used to solve numerically the system of the equations.The temperature field within each component of the SOFC (interconnection, cathode, anode and electrolyte) is calculated via the mathematical model which is implemented in FORTRAN language. The model results demonstrate the effect of different expressions of the chemical heat source, expressed in terms of enthalpy and entropy, on the temperature field and the location of the higher temperatures that occur within the SOFC during its operation.  相似文献   

4.
The mechanism of H2O dissociation as well as the adsorption and oxidation reaction of H2 on yttria-stabilized zirconia (YSZ), commonly used as part of solid oxide fuel cell (SOFC) anodes, was investigated employing temperature-programmed desorption (TPD) spectroscopy and density functional theory (DFT). In agreement with theory the experimental results show that interaction of gaseous H2O with YSZ results in dissociative adsorption leading to strongly bound OH surface species. In the interaction of gaseous H2 with an oxygen-enriched YSZ surface (YSZ + O) similar OH surface species are formed as reaction intermediates in the H2 oxidation. Our experiments showed that in both the H2O/YSZ and the H2/YSZ + O heterogeneous reaction systems noticeable amounts of H2O are “dissolved” in the bulk as interstitial hydrogen and hydroxyl species. The experimental H2O desorption data is used to access the accuracy of the H2/H2O/YSZ adsorption/desorption and surface reaction kinetics data, employed in previous modeling studies of the electrochemical H2 oxidation on Ni-pattern/YSZ model anodes by Vogler et al. [J. Electrochem. Soc., 156 (2009) B663] and Goodwin et al. [J. Electrochem. Soc., 156 (2009) B1004]. Finally a refined experimentally validated H2/H2O/YSZ adsorption/desorption and surface reaction kinetics data set is presented.  相似文献   

5.
The present paper investigates the performance of a solid oxide fuel cell based on proton-conducting electrolyte (SOFC-H+) using one-dimensional steady-state model. The analysis covers a detailed electro-chemical model for H2 and NH3 fuels. The direct internal reforming of NH3 is examined, and the effects of some operating parameters (e.g. temperature, pressure, fuel utilization and oxidant utilization) on the reversible cell potential are investigated. In addition, the overpotentials (including activation, ohmic and concentration) are calculated to study the irreversible behavior of the SOFC-H+ with some actual data operating conditions and material properties taken from the literature. In addition, effects of some operation and structural parameters on cell performance were examined. The present results indicate that the activation and the ohmic losses are considerable. The concentration overpotential at the anode side is negligible due to the fact that H2O is produced at the cathode side. The maximum power density is calculated as 3212 and 3113 W/m2 at 1073 K and 1 atm for the fuels of H2 and NH3. The results further show that H2 provides better performance than NH3 at the same partial pressure. Moreover, NH3 is an excellent hydrogen carrier which is a potential candidate for SOFC-H+ due to its high hydrogen content and considerable cell performance.  相似文献   

6.
A commercial Nafion 112 membrane loaded with the catalysts and catalysts’ support in a segmented way was used for a H2/air PEM fuel cell. On this membrane, the anodic and cathodic catalysts with their support were loaded on five consecutive places in a back to back style forming five catalyst islands of same dimensions on each side of the membrane. So, five sub-fuel cells were existed in one fuel cell compartment. These subcells are connected ionically but not electronically. The polarization behavior for these subcells was measured separately when the other subcells were at a zero load and simultaneously when they were polarized at the same load. Also, the temperature gradient within this segmented PEM fuel cell was measured in front of cathode side of the sub-fuel cells when hydrogen and air gases were flown in a parallel or opposite direction to each other. Temperature gradients were correlated with the observed performance of the fuel cell.  相似文献   

7.
A major factor in global warming is CO2 emission from thermal power plants, which burn fossil fuels. One technology proposed to prevent global warming is CO2 recovery from combustion flue gas and the sequestration of CO2 underground or near the ocean bed. Solid oxide fuel cell (SOFC) can produce highly concentrated CO2, because the reformed fuel gas reacts with oxygen electrochemically without being mixed with air in the SOFC. We therefore propose to operate multi-staged SOFCs with high utilization of reformed fuel to obtain highly concentrated CO2. In this study, we estimated the performance of multi-staged SOFCs considering H2 diffusion and the combined cycle efficiency of a multi-staged SOFC/gas turbine/CO2 recovery power plant. The power generation efficiency of our CO2 recovery combined cycle is 68.5%, whereas the efficiency of a conventional SOFC/GT cycle with the CO2 recovery amine process is 57.8%.  相似文献   

8.
This study investigated the effect of gases such as CO2, N2, H2O on hydrogen permeation through a Pd-based membrane −0.012 m2 – in a bench-scale reactor. Different mixtures were chosen of H2/CO2, H2/N2/CO2 and H2/H2O/CO2 at temperatures of 593–723 K and a hydrogen partial pressure of 150 kPa. Operating conditions were determined to minimize H2 loss due to the reverse water gas shift (RWGS) reaction. It was found that the feed flow rate had an important effect on hydrogen recovery (HR). Furthermore, an identification of the inhibition factors to permeability was determined. Additionally, under the selected conditions, the maximum hydrogen permeation was determined in pure H2 and the H2/CO2 mixtures. The best operating conditions to separate hydrogen from the mixtures were identified.  相似文献   

9.
Au/MoS2 is a promising anode catalyst for conversion of all components of H2S-containing syngas in solid oxide fuel cell (SOFC). MoS2-supported nano-Au particles have catalytic activity for conversion of CO when syngas is used as fuel in SOFC systems, thus preventing poisoning of MoS2 active sites by CO. In contrast to use of MoS2 as anode catalyst, performance of Au/MoS2 anode catalyst improves when CO is present in the feed. Current density over 600 mA cm−2 and maximum power density over 70 mW cm−2 were obtained at 900 °C, showing that Au/MoS2 could be potentially used as sulfur-tolerant catalyst in fuel cell applications.  相似文献   

10.
Solid oxide fuel cells (SOFCs) can be operated in a reversed mode as electrolyzer cells for electrolysis of H2O and CO2. In this paper, a 2D thermal model is developed to study the heat/mass transfer and chemical/electrochemical reactions in a solid oxide electrolyzer cell (SOEC) for H2O/CO2 co-electrolysis. The model is based on 3 sub-models: a computational fluid dynamics (CFD) model describing the fluid flow and heat/mass transfer; an electrochemical model relating the current density and operating potential; and a chemical model describing the reversible water gas shift reaction (WGSR) and reversible methanation reaction. It is found that reversible methanation and reforming reactions are not favored in H2O/CO2 co-electrolysis. For comparison, the reversible WGSR can significantly influence the co-electrolysis behavior. The effects of inlet temperature and inlet gas composition on H2O/CO2 co-electrolysis are simulated and discussed.  相似文献   

11.
The photocatalytic reduction of carbon dioxide (CO2) was studied in a self-designed circulated photocatalytic reaction system under titanium dioxide (TiO2, Degussa P-25) and zirconium oxide (ZrO2) photocatalysts and reductants at room temperature and constant pressure. The wavelengths of incident ultraviolet (UV) light for the photocatalysis of TiO2 and ZrO2 were 365 and 254 nm, respectively. Experimental results indicated that the highest yield of the photoreduction of CO2 were obtained using TiO2 with H2+H2O and ZrO2 with H2. Photoreduction of CO2 over TiO2 with H2+H2O formed CH4, CO, and C2H6 with the yield of 8.21, 0.28, and 0.20 μmol/g, respectively, while the photoreduction of CO2 over ZrO2 with H2 formed CO at a yield of 1.24 μmol/g. The detected reaction products supported the proposition of two reaction pathways for the photoreduction of CO2 over TiO2 and ZrO2 with H2 and H2O, respectively. Additionally, a one-site Langmuir-Hinshewood (L-H) kinetic model was successfully applied to simulate the photoreduction rate of CO2.  相似文献   

12.
A fundamental step for a sustainable industrial development based on “H2 Economy” is the implementation of fuel cell technology, in terms of new devices, materials and convenient processes for their production. Rare earth doped ceria oxides are suitable materials for the new generations of cells and their cost effective production becomes fundamental as the price of rare earths is increasing. In this view, our study investigates a modified method of co-precipitation of Ce0.8Sm0.2O1.9−x (SDC) evaluating the effects of adding of H2O2 in the process. The parameters controlled were the molar ratio [H2O2]/[M3+], (M3+ = Ce3+, Sm3+ present in starting nitrate salts solutions) and the pH of precipitation; in some cases the precipitates were also treated under reflux at 373 K overnight. The powder catalysts, both as fresh precipitates and calcined oxides were analyzed via N2 adsorption (BET), X-Ray diffraction (XRD) and temperature programmed reduction (TPR) techniques and their morphological, structural and redox properties were correlated with the synthesis parameters used. The electrical conductivity properties of these materials have also been investigated via electrochemical impedance spectroscopy (EIS) and the results compared with those of a commercial oxide. The synthesis approach was shown to be very versatile in the development of materials with properties exploitable for applications in catalysis and in intermediate temperature Solid Oxide Fuel Cell (IT-SOFC) systems.  相似文献   

13.
12.5 wt.% ceria-substituted on the A-sites of La0.75Sr0.25Cr0.5Mn0.5O3−δ (LSCM) for La0.75Sr0.125 Ce0.125Cr0.5Mn0.5O3−δ (LSCCM) has been synthesized by the sol–gel process and evaluated as the electrode materials of symmetric solid oxide cells. The orthorhombic perovskite-type structure was demonstrated using X-ray diffraction (XRD) and part of cerium has been successfully doped to LSCM and presents two valence states (+3 and +4). In addition, the surface adsorption oxygen content increases due to ceria-doping using X-ray photoelectron spectroscopy (XPS). The measured electrical conductivity shows that the addition of ceria yields increase in total conductivity in air and humidified H2. Electrochemical performance test of yttria-stabilized zirconia (YSZ) electrolyte-supported symmetric solid oxide fuel cell with the configuration of LSCCM|YSZ|LSCCM was performed, and shows peak power density of 33.12 mW cm−2 at 1173 K when operating in wet 3% H2–1% H2S, far greater than the one of LSCM in the same test conditions.  相似文献   

14.
The reaction of ground-state NH with H2 has been studied in a high-temperature photochemistry (HTP) reactor. The NH(X3Σ) radicals were generated by the 2-photon 193 nm photolysis of NH3, following the decay of the originally produced NH(A3Π) radicals. Laser-induced fluorescence on the transition at 336 nm was used to monitor the progress of the reaction. We obtained , with ±2σ precision limits varying from 12 to 33% and corresponding accuracy levels from 23 to 39%. This result is in excellent agreement with that of Rohrig and Wagner [Proc. Combust. Inst. 25 (1994) 975] and the data sets can be combined to yield . Starting with this agreement, it is argued that their rate coefficients for NH + CO2 could not be significantly in error [Proc. Combust. Inst. 25 (1994) 975]. This, combined with models of several combustion systems, indicates that HNO + CO cannot be the products, contrary to their suggestion [Proc. Combust. Inst. 25 (1994) 975]. Ab initio calculations have been performed which confirm this conclusion by showing the barriers leading to these products to be too high compared to the measured activation energies. The calculations indicate the likelihood of formation of adducts, of low stability. These then may undergo further reactions. The NH + H2O reaction is briefly discussed and it is similarly argued that HNO + H2 cannot be the products, as had been previously suggested.  相似文献   

15.
Detailed X-ray diffraction (XRD) analysis of two different Sr-doped LaFeO3 cathodes, YSZ electrolyte and two Sm/Gd-doped CeO2 interlayer and their mixtures were used to evaluate the formation of undesired secondary reaction compounds. The analysis of room temperature X-ray diffraction data of the mixtures indicates the crystallization of strontium and/or lanthanum zirconates between the cathode and the electrolyte materials and no detected reaction between the cathode and the interlayer materials.  相似文献   

16.
The influence of pyrazole additives in an I/I3 redox electrolyte solution on the performance of a bis(tetrabutylammonium)cis-bis(thiocyanato)bis(2,2′-bipyridine-4-carboxylic acid, 4′-carboxylate)ruthenium(II) (N719) dye-sensitized TiO2 solar cell was studied. The current–voltage characteristics of the cell were measured using 18 different pyrazole derivatives. All of the pyrazole additives enhanced the open-circuit photovoltage (Voc) and the solar energy conversion efficiency (η), but reduced the short-circuit photocurrent density (Jsc). Most of the pyrazoles improved fill factor (ff). The physical and chemical properties of the pyrazoles were computationally calculated in order to elucidate the reasons for the additive effects on cell performance. The greater the partial charge of the nitrogen atom at position 2 in the pyrazole group, the larger the Voc, but the smaller the Jsc values. As the dipole moment of the pyrazole derivatives increased, the Voc value increased, but the Jsc value decreased. The Voc of the cell also increased as the ionization energy of the pyrazoles decreased. These results suggest that the electron donicity of the pyrazole additives affected the interaction with the nanocrystalline TiO2 photoelectrode, the I/I3 electrolyte, and the acetonitrile solvent, which changed the Ru(II)-dye-sensitized solar cell performance.  相似文献   

17.
Nickel foam has been applying as the electrode support material for alkaline direct ethanol fuel cells, since its unique three-dimensional network structure helps efficiently use the catalyst to improve the cell performance. In this work, the effect of the thickness of nickel foam electrodes on cell performance is investigated. The experimental results show that the nickel foam thickness influences both the electron conduction and mass transfer, and the optimal thickness is a trade-off between them. Through XRD, SEM image, polarization curve test, EIS test and CV test, it is found that the nickel foam electrode with the thickness of 0.6 mm has better performance than that of 0.3 mm and 1.0 mm. The thinner the nickel foam, the better the conductivity. However, the corresponding three-dimensional space becomes narrower, which leads to partial agglomeration of the catalyst and hindrance of mass transfer. In addition, the influence of catalyst loading on the performance of 0.6 mm nickel foam electrode is explored. The maximum power density of 1.0 mg cm−2 Pd loading reaches 56.3 mW cm−2 at 60 °C, which is higher than that of 2.0 mg cm−2 loading, indicating that the three-dimensional network structure of nickel foam can efficiently utilize the catalyst, and fully exert the catalytic function of the catalyst even at a lower catalyst loading. Moreover, the effects of operating temperature and ethanol concentration on cell performance are also studied. The cell performance increases with the increase of temperature, and it reaches the highest with 3 M ethanol.  相似文献   

18.
The influence of aminothiazole additives in acetonitrile solution of an I/I3 redox electrolyte on the performance of a bis(tetrabutylammonium)cis-bis(thiocyanato)bis(2,2′- bipyridine-4-carboxylic acid, 4′-carboxylate)ruthenium(II) (N719) dye-sensitized TiO2 solar cell was studied. The current–voltage characteristics were investigated under AM 1.5 (100 mW/cm2) for nine different aminothiazole compounds. The aminothiazole additives tested had varying influences on the solar cell performance. Most of the additives enhanced the open-circuit photovoltage (Voc), but reduced the short circuit photocurrent density (Jsc) of the solar cell. Both the physical and chemical properties of the aminothiazoles were computationally calculated in order to determine the reasons that the additive influenced solar cell performance. The larger the calculated partial charge of the nitrogen atom in the thiazole, the higher the Voc value. The Voc value increased as the dipole moment of aminothiazoles in acetonitrile increased. Moreover, the Voc of the solar cell also increased as the size of the aminothiazole molecules decreased. These results suggest that the electron donicity of the aminothiazole additives influenced the interaction with the TiO2 photoelectrode, which altered the dye-sensitized solar cell performance.  相似文献   

19.
The performance of a polymer electrolyte membrane fuel cell (PEMFC) operating on a simulated hydrocarbon reformate is described. The anode feed stream consisted of 80% H2, ∼20% N2, and 8 ppm hydrogen sulfide (H2S). Cell performance losses are calculated by evaluating cell potential reduction due to H2S contamination through lifetime tests. It is found that potential, or power, loss under this condition is a result of platinum surface contamination with elemental sulfur. Electrochemical mass spectroscopy (EMS) and electrochemical techniques are employed, in order to show that elemental sulfur is adsorbed onto platinum, and that sulfur dioxide is one of the oxidation products. Moreover, it is demonstrated that a possible approach for mitigating H2S poisoning on the PEMFC anode catalyst is to inject low levels of air into the H2S-contaminated anode feeding stream.  相似文献   

20.
The Rayleigh scattering technique has been applied to a V-shaped methane-air flame in order to investigate the effect of H2 enrichment on the laminar flame thickness for a wide range of equivalence ratios (0.4 to 0.9) and a wide range of enrichment rates (from 10% to 40% in volume). From the Rayleigh scattering signal, the temperature is estimated using an original noniterative experimental-numerical coupled method where the variation of the cross section across the flame front is taken into account. The determination of temperature gradient is carried out using a statistical criterion and all data post-processing are validated by comparing experimental and numerical results. As expected, a decrease in flame thickness is observed when H2 is added to methane-air flames. There is very good agreement between numerical and experimental results for equivalence ratios higher than 0.55. Below this value, a great discrepancy is observed and a large scatter between various chemical mechanisms can be observed. In the validated domain of GRImech3.0, the numerical results are used to give explanation elements concerning the decrease in the flame thickness when methane is H2-enriched. From the energy equation analysis, two different mechanisms emerge. The first takes place at high temperature and leads to an increase of the global heat release rate magnitude. It mainly involved the chain branching reaction H + O2 ? O + OH. The second takes place at low temperature and affect the preheat zone. It involves the reaction H + O2(+ M) ? HO2(+ M) and allows the methane to be oxidized at lower temperature and thus an earlier heat release.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号