首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 943 毫秒
1.
Maritime industry has led renewable energy sources for the greener environment and efficient vehicles that effect by increasing population and energy demands. Hydrogen is one of the most popular of these renewable energy sources and one of the most favourable research area, worldwide. In this study, authors reported the usage of hydrogen fuel cells in marine transport as main power forwarder, their advantages and challenges under the lights on state of art and furthermore new technologies perspective. The latest research activities, hydrogen production and storage methods with challenges are analyzed and the developments of fuel cell based marine vehicles are discussed. In detailed, newly approachment of electrolyses from seawater for sustainable fuel necessity is discussed. As a result, this forseen study is important in terms of handling energy from seawater and compiling the latest technology for marine transport.  相似文献   

2.
The environmental pollution and diminishing conventional fuel sources and global warming problems make it more attractive for considering renewables as alternative energy sources, such as solar, wind and micro hydro, etc. Recent advances in hydrogen and fuel cell technologies further facilitate these energy options to supply electrical power to various communities. Hydrogen fuel cell systems coupled with renewable energy sources stand out as a promising solution. This paper presents an integrated system framework for fuel cell-based distributed energy applications. Five components are included in this framework: a physical energy system application, a virtual simulation model, a distributed coordination and control, a human system interface and a database. The integrated system framework provides a means to optimize system design, evaluate its performance and balance supplies and demands in a hydrogen assisted renewable energy application. It can either be applied to a distributed energy node that fulfills a local energy demand or to an energy-network that coordinates distributed energy nodes in a region, such as a hydrogen highway. The proposed system framework has been applied in the first phase of our multi-phases project to investigate and analyze the feasibility and suitability of hydrogen fuel assisted renewable power for a remote community. Through integration with an available renewable energy profile database, the developed system efficiently assists in selecting, integrating, and evaluating different system configurations and various operational scenarios at the application site. The simulation results provide a solid basis for the next phase of our demonstration projects.  相似文献   

3.
叙述了发展低碳经济的紧迫性,指出,山西应从加大投资,开发无碳和可再生能源,促进高碳能源低碳化利用,开发煤气化与氢能的结合、煤层气综合利用、焦炉煤气深加工的技术,制作氢与天然气的混合燃料,以及强化高碳企业集群化、低碳化发展,培养低碳经济龙头企业和加强政府政策扶持等方面着手,推进山西低碳经济的发展。  相似文献   

4.
This paper is a critical review of selected real-world energy storage systems based on hydrogen, ranging from lab-scale systems to full-scale systems in continuous operation. 15 projects are presented with a critical overview of their concept and performance. A review of research related to power electronics, control systems and energy management strategies has been added to integrate the findings with outlooks usually described in separate literature. Results show that while hydrogen energy storage systems are technically feasible, they still require large cost reductions to become commercially attractive. A challenge that affects the cost per unit of energy is the low energy efficiency of some of the system components in real-world operating conditions. Due to losses in the conversion and storage processes, hydrogen energy storage systems lose anywhere between 60 and 85% of the incoming electricity with current technology. However, there are currently very few alternatives for long-term storage of electricity in power systems so the interest in hydrogen for this application remains high from both industry and academia. Additionally, it is expected that the share of intermittent renewable energy in power systems will increase in the coming decades. This could lead to technology development and cost reductions within hydrogen technology if this technology is needed to store excess renewable energy. Results from the reviewed projects indicate that the best solution from a technical viewpoint consists in hybrid systems where hydrogen is combined with short-term energy storage technologies like batteries and supercapacitors. In these hybrid systems the advantages with each storage technology can be fully exploited to maximize efficiency if the system is specifically tailored to the given situation. The disadvantage is that this will obviously increase the complexity and total cost of the energy system. Therefore, control systems and energy management strategies are important factors to achieve optimal results, both in terms of efficiency and cost. By considering the reviewed projects and evaluating operation modes and control systems, new hybrid energy systems could be tailored to fit each situation and to reduce energy losses.  相似文献   

5.
Energy storage from renewable sources is one of the main current goals for the energy sector, and the production of a substitute of natural gas could be a good solution to solve the problem in the short term, helping the transition to hydrogen in the long term.Renewable energy sources usually generate variable electric power or medium/low energy content gas. This paper proposes a way to upgrade these products through the use of electrolytic hydrogen. By using electrolytic oxygen as an oxidant for biomass partial oxidation and for high temperature fuel cells, the exhaust gas after post-combustion is an almost pure mixture of water and carbon dioxide. Once such a gas is dehydrated, the carbon dioxide can be mixed with electrolytic hydrogen to obtain methane through the Sabatier process.Four layouts based on molten carbonate fuel cells and solid oxide fuel cells has been investigated. The results obtained are very similar: the conversion efficiency is close to 60% and the mix of energy output consist of fuel for about 75% and electric power for about 25%.  相似文献   

6.
It is necessary to have an energy management system based on one or more control strategies to sense, monitor, and control the behavior of the hybrid energy sources. In renewable hybrid power systems containing fuel cells and batteries, the hydrogen consumption reduction and battery state of charge (SOC) utilizing are the main objectives. These parameters are essential to get the maximum befits of cost reduction as well as battery and hydrogen storage lifetime increasing. In this paper, a novel hybrid energy management system (HEMS) was designed to achieve these objectives. A renewable hybrid power system combines: PV, PEMFC, SC, and Battery was designed to supply a predetermined load with its needed power. This (REHPS) depends on the PV power as a master source during the daylight. It uses the FC to support as a secondary source in the night or shading time. The battery is helping the FC when the load power is high. The supercapacitor (SC) is working at the load transient or load fast change. The proposed energy management system uses fuzzy logic and frequency decoupling and state machine control strategies working together as a hybrid strategy where the switching over between both strategies done automatically based on predetermined values to obtain the minimum value of hydrogen consumption and the maximum value of SOC at the same time. The proposed HEMS achieves 19.6% Hydrogen consumption saving and 5.4% increase in SOC value compared to the results of the same two strategies when working as a stand-alone. The load is designed to show a surplus power when the PV power is at its maximum value. This surplus power is used to charge the battery. To validate the system, the results were compared with the results of each strategy if working separately. The comparison confirms the achievement of the hybrid energy management system goal.  相似文献   

7.
A real-time energy management system for an off-grid smart home is presented in this paper. The primary energy sources for the system are wind turbine and photovoltaics, with a fuel cell serving as a supporting energy source. Surplus power is used to generate hydrogen through an electrolyzer. Data on renewable energy and load demand is gathered from a real smart home located in the Yildiz Technical University Smart Home Laboratory. The aim of the study is to reduce hydrogen consumption and effectively utilize surplus renewable energy by managing controllable loads with fuzzy logic controller, all while maintaining the user's comfort level. Load shifting and tuning are used to increase the demand supplied by renewable energy sources by 10.8% and 13.65% from wind turbines and photovoltaics, respectively. As a result, annual hydrogen consumption is reduced by 7.03%, and the average annual efficiency of the fuel cell increases by 4.6%  相似文献   

8.
Storing renewable energy sources is becoming a very important issue to allow a further reduction of greenhouse gas emissions. Most of such energy sources generate electric power which not always can be conveniently transferred to the grid and also its conversion to hydrogen presents some critical aspects connected mainly to hydrogen distribution and storage.Electrolysis generates not only hydrogen, but also oxygen which could be used to burn biomass or waste products (oxycombustion) in power plants with the result to obtain an exhaust gas containing mainly water and CO2. This last can be converted into a mixture of methane and hydrogen by reacting with electrolytic hydrogen, so that the power used for electrolysis is stored into a fuel which can be distributed and stored just like natural gas.In this paper, an innovative biomass fuelled plant has been designed and simulated for different layouts with an internal combustion engine as a main power system. Utilizing hydrogen and oxygen produced through electrolysis and applying a hydrogasification process, the plant produces electricity and a substitute of natural gas. The result of such simulations is that the electricity can be stored in a useful and versatile fuel with a marginal efficiency up to 60%.  相似文献   

9.
The current paper presents the study of coupling a wind-turbine with a fuel cell to improve the utilization of wind power in the non-interconnected Greek archipelago grid. A part of the energy produced by the wind-turbine is stored in the form of hydrogen and is then delivered to the consumption at constant power through a fuel cell. This decoupling between the wind potential and power delivery is necessary to increase the contribution of renewable energy sources to the small capacity grids of islands. The study presents the technology of the system and simulates its operation over a year using a specially developed software and actual wind speed input data. In this way, the energy availability can be estimated and is presented for hybrid installations of increasing size. The nominal size of the individual devices (electrolyser, fuel cell, hydrogen storage tanks) is then selected depending on the hybridisation level, that is the ratio of energy delivered directly from the wind-turbine over the energy delivered from the fuel cell. Results show that it is possible to replace conventional power stations with a hybrid system, delivering energy under constant power with fuel cell sizes that reach almost up to 1/3 of the nominal wind-turbine power and overall efficiencies that may exceed 60%.  相似文献   

10.
Conventional energy technologies are not environmentally friendly, are not renewable, and also the cost of using fossil and nuclear fuels will go higher and higher (anecdotal evidence suggests that consumers will be paying three times their current bill 5 years from now). Therefore, renewable energy sources will play important roles in electricity generation. This paper highlights the advantages of renewable technologies, like future prospects for the poor population, being environmentally friendly, and also available in abundance. This paper points outs the factors seeking hydrogen energy and fuel cell technology to eradicate environmental disasters. This paper is significant as it looks into optimal utilization of renewable energy sources with major emphasis on H2 optimization and fuel cells application utilizing cogeneration technology. This paper discusses the multiple hydrogen production pathways from different sources, including renewable and nonrenewable sources, H2 safety, and also barriers to use of hydrogen energy. This paper recommends different types of quantitative and qualitative methods for optimal energy planning, and different types of fuel cells are also discussed. This paper explains a hybrid system inclusive of renewable energy, with its types and benefits. Finally, this paper concludes that Australia could switch from conventional fossil fuel technology to hybrid energy inclusive of renewable energy.  相似文献   

11.
This work uses harmonised life-cycle indicators of hydrogen to explore its role in the environmental performance of proton exchange membrane fuel cell (PEMFC) passenger vehicles. To that end, three hydrogen fuel options were considered: (i) conventional, fossil-based hydrogen from steam methane reforming; (ii) renewable hydrogen from biomass gasification; and (iii) renewable hydrogen from wind power electrolysis. In order to increase the robustness of the life-cycle study, the environmental profile of each hydrogen option was characterised by three harmonised indicators: carbon footprint, non-renewable energy footprint, and acidification footprint. When enlarging the scope of the assessment according to a well-to-wheels perspective, the results show that the choice of hydrogen fuel significantly affects the life-cycle performance of PEMFC vehicles. In this regard, the use of renewable hydrogen –instead of conventional hydrogen from steam methane reforming– is essential when pursuing low carbon and energy footprints. Nevertheless, the identification of the most favourable renewable hydrogen option was found to be conditioned by the prioritised life-cycle indicators.  相似文献   

12.
Cross utilization of photovoltaic/wind/battery/fuel cell hybrid-power-system has been demonstrated to power an off-grid mobile living space. This concept shows that different renewable energy sources can be used simultaneously to power off-grid applications together with battery and hydrogen energy storage options. Photovoltaic (PV) and wind energy are used as primary sources and a fuel cell is used as backup power. A total of 2.7 kW energy production (wind and PV panels) along with 1.2 kW fuel cell power is supported with 17.2 kWh battery and 15 kWh hydrogen storage capacities. Supply/demand scenarios are prepared based on wind and solar data for Istanbul. Primary energy sources supply load and charge batteries. When there is energy excess, it is used to electrolyse water for hydrogen production, which in turn can either be used to power fuel cells or burnt as fuel by the hydrogen cooker. Power-to-gas and gas-to-power schemes are effectively utilized and shown in this study. Power demand by the installed equipment is supplied by batteries if no renewable energy is available. If there is high demand beyond battery capacity, fuel cell supplies energy in parallel. Automatic and manual controllable hydraulic systems are designed and installed to increase the photovoltaic efficiency by vertical axis control, to lift up & down wind turbine and to prevent vibrations on vehicle. Automatic control, data acquisition, monitoring, telemetry hardware and software are established. In order to increase public awareness of renewable energy sources and its applications, system has been demonstrated in various exhibitions, conferences, energy forums, universities, governmental and nongovernmental organizations in Turkey, Austria, United Arab Emirates and Romania.  相似文献   

13.
An increasingly large percentage of power is being generated from renewable energy sources with intermittent and fluctuating outputs. Therefore there is a growing need for energy storage. With power-to-gas, excess electricity is converted into hydrogen by water electrolysis, which can be stored and, when needed, can be reconverted into electricity with fuel cells. Besides the energy vector for electricity, mobility and heat, hydrogen can be utilized as a raw material for the chemical industry or further be used for the synthesis of various hydrocarbon fuels such as methane.  相似文献   

14.
This work presents a design methodology for a hybrid energy system based on multiple renewable power sources and bioethanol. The new concept of generation consists on having multiple power sources such as a PEM fuel cell system fed by the hydrogen produced by a bioethanol reformer and wind-solar sources working all together supervised by the energy management system. The necessary heating for the bioethanol reforming reaction can be provided by the renewable sources to enhance the efficiency of the hydrogen production. It is worth noting that, from the power balance as well as backup point of views, the hybrid system is equipped with energy storage devices. An optimal sizing methodology integrated with the energy management strategy is proposed here for designing the overall hybrid system. The suggested approach is based on genetic algorithms, using historical climate data and load demands over a period of one year. Several simulation results are given to show the methodology performance in terms of loss of power supply probability (LPSP), costs and bioethanol consumption.  相似文献   

15.
A more sustainable transportation calls for the use of alternative and renewable fuels, a further increase of the fuel energy conversion efficiency of internal combustion engines as well as the reduction of the thermal engine energy supply by recovering the braking energy. The paper presents two concepts being developed to improve the fuel conversion efficiency of internal combustion engines for transport applications. The first concept works on the combustion evolution to increase the amount of fuel energy transformed in piston work within the cylinder. The second concept works on the waste exhaust and coolant energies to be recovered through a power turbine downstream of the turbocharger turbine on the exhaust line and a steam turbine feed with the steam produced by a boiler/super heater made of the coolant passages and a heat exchanger on the exhaust line. The concepts work with hydrogen (and in this case a water injector is also necessary) as well as lower alkanes (methane, propane, butane). Preliminary simulations show improvement of top fuel conversion efficiencies to above 50% in the high power density operation. The waste heat recovery system also permits faster warm-up during cold start driving cycles.  相似文献   

16.
The weather-dependent electricity generation from Renewable Energy Sources (RES), such as solar and wind power, entails that systems for energy storage are becoming progressively more important. Among the different solutions that are being explored, hydrogen is currently considered as a key technology allowing future long-term and large-scale storage of renewable power.Today, hydrogen is mainly produced from fossil fuels, and steam methane reforming (SMR) is the most common route for producing it from natural gas. None of the conventional methods used is GHG-free. The Power-to-Gas concept, based on water electrolysis using electricity coming from renewable sources is the most environmentally clean approach. Given its multiple uses, hydrogen is sold both as a fuel, which can produce electricity through fuel cells, and as a feedstock in several industrial processes. Just the feedstock could be, in the short term, the main market of RES-based hydrogen.In this paper, we present the results obtained from a techno-economic-financial evaluation of a system to produce green hydrogen to be sold as a feedstock for industries and research centres. A system which includes a 200 kW photovoltaic plant and a 180 kW electrolyser, to be located in Messina (Italy), is proposed as a case study. According to the analyses carried out, and taking into account the current development of technologies, it has been found that investment to realise a small-scale PV-based hydrogen production plant can be remunerative.  相似文献   

17.
When it comes to the energy planning, computer programs like H2RES are becoming valuable tools. H2RES has been designed as support for simulation of different scenarios devised by RenewIsland methodology with specific purpose to increase integration of renewable sources and hydrogen into island energy systems. The model can use wind, solar, hydro, biomass, geothermal as renewable energy sources and fossil fuel blocks and grid connection with mainland as back up. The load in the model can be represented by hourly and deferrable electricity loads of the power system, by hourly heat load, by hydrogen load for transport and by water load depending on water consumption. The H2RES model also has ability to integrate different storages into island energy system in order to increase the penetration of intermittent renewable energy sources or to achieve a 100% renewable island. Energy storages could vary from hydrogen loop (fuel cell, electrolyser and hydrogen storage) to reversible hydro or batteries for smaller energy systems. The H2RES model was tested on the power system of the Island of Porto Santo – Madeira, the islands of Corvo, Graciosa, and Terrciera – Azores, Sal Island – Cape Verde, Portugal, the Island of Mljet, Croatia and on the energy system of the Malta. Beside energy planning of the islands, H2RES model could be successfully applied for simulation of other energy systems like villages in mountain regions or for simulation of different individual energy producers or consumers.  相似文献   

18.
A stand-alone power system based on a photovoltaic array and wind generators that stores the excessive energy from renewable energy sources (RES) in the form of hydrogen via water electrolysis for future use in a polymer electrolyte membrane (PEM) fuel cell is currently in operation at Neo Olvio of Xanthi, Greece. Efficient power management strategies (PMSs) for the system have been developed. The PMSs have been assessed on their capacity to meet the power load requirements through effective utilization of the electrolyzer and fuel cell under variable energy generation from RES (solar and wind). The evaluation of the PMS has been performed through simulated experiments with anticipated conditions over a typical four-month time period for the region of installation. The key decision factors for the PMSs are the level of the power provided by the RES and the state of charge (SOC) of the accumulator. Therefore, the operating policies for the hydrogen production via water electrolysis and the hydrogen consumption at the fuel cell depend on the excess or shortage of power from the RES and the level of SOC. A parametric sensitivity analysis investigates the influence of major operating variables for the PMSs such as the minimum SOC level and the operating characteristics of the electrolyzer and the fuel cell in the performance of the integrated system.  相似文献   

19.
Hydrogen fuelling station is an infrastructure for the commercialisation of hydrogen energy utilising fuel cells, particularly, in the automotive sector. Hydrogen fuel produced by renewable sources such as the solar and wind energy can be an alternative fuel to depress the use of fuels based on fossil sources in the transport sector for sustainable clean energy strategy in future. By replacing the primary fuel with hydrogen fuel produced using renewable sources in road transport sector, environmental benefits can be achieved. In the present study, techno-economic analysis of hydrogen refuelling station powered by wind-photovoltaics (PV) hybrid power system to be installed in ?zmir-Çe?me, Turkey is performed. This analysis is carried out to a design of hydrogen refuelling station which is refuelling 25 fuel cell electric vehicles on a daily basis using hybrid optimisation model for electric renewable (HOMER) software. In this study, National Aeronautics and Space Administration (NASA) surface meteorology and solar energy database were used. Therefore, the average wind speed during the year was assessed to be 5.72 m/s and the annual average solar irradiation was used to be 5.08 kW h/m2/day for the considered site. According to optimisation results obtained for the proposed configuration, the levelised cost of hydrogen production was found to be US $7.526–7.866/kg in different system configurations. These results show that hydrogen refuelling station powered by renewable energy is economically appropriate for the considered site. It is expected that this study is the pre-feasibility study and obtained results encougare the hydrogen refuelling station to be established in Turkey by inventors or public institutions.  相似文献   

20.
Due to varied global challenges, potential energy solutions are needed to reduce environmental impact and improve sustainability. Many of the renewable energy resources are of limited applicability due to their reliability, quality, quantity, and density. Thus, the need remains for additional sustainable and reliable energy sources that are sufficient for large-scale energy supply to complement and/or back up renewable energy sources. Nuclear energy has the potential to contribute a significant share of energy supply with very limited impacts to global climate change. Hydrogen production via thermochemical water decomposition is a potential process for direct utilization of nuclear thermal energy. Nuclear hydrogen and power systems can complement renewable energy sources by enabling them to meet a larger extent of global energy demand by providing energy when the wind does not blow, the sun does not shine, and geothermal and hydropower energies are not available. Thermochemical water splitting with a copper–chlorine (Cu–Cl) cycle could be linked with nuclear and selected renewable energy sources to decompose water into its constituents, oxygen and hydrogen, through intermediate copper and chlorine compounds. In this study, we present an integrated system approach to couple nuclear and renewable energy systems for hydrogen production. In this regard, nuclear and renewable energy systems are reviewed to establish some appropriate integrated system options for hydrogen production by a thermochemical cycle such as Cu–Cl cycle. Several possible applications involving nuclear independent and nuclear assisted renewable hydrogen production are proposed and discussed. Some of the considered options include storage of hydrogen and its conversion to electricity by fuel cells when needed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号