首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Global reserves of mineral phosphorus are finite and the recycling of phosphorus from wastewater, a significant sink for phosphorus, can contribute to a more sustainable use. In Germany, Switzerland, and the Netherlands, an increasing percentage of municipal sewage sludge is incinerated and the contained phosphorus is lost. This paper reviews current technologies and shows that a complete phosphorus recovery from wastewater is technically feasible. Depending on the composition of the sewage sludge ash (SSA), there are various options for phosphorus recovery that are presented. Iron-poor SSAs can be used directly as substitute for phosphate rock in the electrothermal phosphorus process. SSAs with low heavy metal contents can be used as fertilizer without prior metal elimination. Ashes not suitable for direct recycling can be processed by thermal processes. Operators of wastewater treatment plants can additionally influence the ash composition via the selection of precipitants and the control of (indirect) dischargers. This way, they can choose the most suitable phosphorus recovery option. For sewage sludge that is co-incinerated in power plants, municipal waste incinerators or cement kilns phosphorus recovery is not possible. The phosphorus is lost forever.  相似文献   

2.
In this paper, phosphorus balances are calculated for the wastewater purification and sludge treatment stages for wastewater treatment plants (WWTPs) applying Enhanced Biological Phosphorus Removal (EBPR). The possible P-recovery potential is then estimated and evaluated regarding different locations along the process of wastewater purification and sludge treatment, taking the different phosphorus bonding forms into account. Caused by the more favourable bonding forms in the excess sludge as well as possibly also in the sludge ash a recovery of the phosphorus seems especially favoured for WWTPs with EBPR. The processes available for a P recycling are named, and special regard is given to the Phostrip-process, which is a possible recycling process already tested in practice. Further R&D demand consists in basic research regarding disintegration, fermentation or acidic total digestion of excess sludge followed by phosphorus precipitation including separation of the precipitates, MAP-precipitation and separation from digested sludge and on the ability to extract phosphorus and heavy metals from sewage sludge ash. These investigations are a precondition to enable purposeful process developments. At the present state the cost of recycled phosphorus earned from wastewater, sludge and ash, respectively, are a multiple higher than the costs for raw phosphate taking into account the suitable processes. Thus, up to now no phosphorus recycling with a defrayal of costs is possible. The future importance of phosphorus recycling will depend on the market price for raw phosphate, the recycling costs and, furthermore, on the general political framework.  相似文献   

3.
The potential of a new wet chemical process for phosphorus and aluminium recovery from sewage sludge ash by sequential elution with acidic and alkaline solutions has been investigated: SESAL-Phos (sequential elution of sewage sludge ash for aluminium and phosphorus recovery). Its most innovative aspect is an acidic pre-treatment step in which calcium is leached from the sewage sludge ash. Thus the percentage of alkaline soluble aluminium phosphates is increased from 20 to 67%. This aluminium phosphate is then dissolved in alkali. Subsequently, the dissolved phosphorus is precipitated as calcium phosphate with low heavy metal content and recovered from the alkaline solution. Dissolved aluminium is recovered and may be reused as a precipitant in wastewater treatment plants.  相似文献   

4.
污水处理领域磷回收技术及其应用   总被引:3,自引:0,他引:3       下载免费PDF全文
介绍了国内外从污水中磷回收研究与应用现状,多以含磷丰富的污泥脱水上清液、厌氧污泥消化液以及富磷废水为磷源,鸟粪石、磷酸钙等沉淀是目前广泛采用的回收形式。简述污水处理领域的磷回收技术有沉淀法,结晶法,电渗析法、离子交换等。沉淀法中鸟粪石、磷酸钙等的研究相对较为成熟,应用较多。最后展望了我国污水处理领域磷回收前景,2005年我国污水中的磷量相当于2000年全国磷矿开采量的42.7%,具有广泛的回收前景和环境经济效益。  相似文献   

5.
The amount of excess sludge produced in municipal wastewater treatment plants in Japan is increasing every year as the urban population increases. Phosphorus in excess sludge could be a potential phosphorus resource since at present, phosphate rock is being exhausted all over the world. Every year, Japan imports large quantities of phosphorus from abroad but much is discharged as excess sludge. Therefore, the solubilization process, one method of recovering phosphorus from sludge, could be a promising solution. In this study, a subcritical water process, a new technology that solubilizes sludge under subcritical conditions, was applied before the phosphorus in sludge was recovered with the magnesium ammonium phosphate (MAP) process. As a result, the solubilization rate of excess sludge achieved approximately 80% and about 94-97% of the phosphorus could be recovered.  相似文献   

6.
Dutch analysis for P-recovery from municipal wastewater.   总被引:4,自引:0,他引:4  
There is a considerable practical interest in phosphorus recovery from water authorities, elementary P-industry, fertilizer industry and regulators in a number of countries. Due to a handful of full-scale plants worldwide, P-recovery can be seen as technically feasible. However, the economic feasibility of P-recovery from sewage can still be judged as dubious. The most important reason for this is that the prices of the techniques (in euro/tonne P) are much higher compared to the prices of phosphate rock. In this paper an analysis is given to recover phosphate from municipal wastewater for the elementary P-industry Thermphos International B.V. and the fertiliser industry Amsterdam Fertilizers B.V. in The Netherlands. Several scenarios are evaluated and the end products of these scenarios are compared to the quality required by both industries. From a Dutch study it became clear that all end products from the final sludge treatment do not provide a good source of secondary phosphate. As a consequence of this, the most preferred possibility for P-recovery is to extract phosphate before sludge goes to the final sludge treatment. Different scenarios can be selected based on the position of P-recovery in the WWTP configuration, the type of P-recovery product, and the precipitation technique. Local conditions will determine which scenario is the most expedient. Because it is more realistic to judge a practical situation instead of theoretical estimations based on literature, some local situations have to be assessed in sufficient detail to gain more feeling for the expenses and possible savings of P-recovery. One important actor that should be involved in the process management around P-recovery, is the national government. Especially, the Government have the responsibility for sustainable development and should have attention for some stimulation of P-recovery in The Netherlands. Water authorities and the P- and fertilizer industry made already some good steps.  相似文献   

7.
Chemical phosphorus removal using metal (iron and aluminium) salts is frequently used to control effluent soluble phosphorus levels in wastewater treatment plants. In the Washington DC area effluent phosphorus requirements are extremely stringent to protect the Chesapeake Bay. Full-scale data from two plants in the area were analysed to establish phosphate behaviour in the presence of iron. Titration experiments and mathematical modelling were performed to determine the role of ferric phosphate and hydroxide precipitation and other mechanisms that may potentially be involved in phosphorus removal. Iron addition is described in the model using a chemical equilibrium approach extended with surface charges and adsorption. The model verifies key observations from full-scale data: (a) extremely low orthophosphate levels can be achieved over a wide range of pH values, (b) a mixture of ferric phosphate and ferric hydroxide precipitate is forming with the hydroxide acting as sorbent, (c) molar ratios of Fe/P (iron dosed to phosphate removed) vary widely (1.0-3.9) based on the technology used and residual phosphate levels. The model will be a useful tool for engineers to optimise preliminary, simultaneous and tertiary P removal, both for design and plant operation.  相似文献   

8.
In the present study, phosphorus removal was studied using as coagulant spent alum sludge from a water treatment plant of EYDAP (Athens Water Supply and Sewerage Company) and compared to alum (Al2(SO4)3.18H2O), iron chloride (FeCl3.7H2O), iron sulfate (Fe2(S04).10H2O) and calcium hydroxide (Ca(OH)2) at a constant pH (equal to 6).The comparison was based on their efficiency to remove phosphorus in synthetic wastewater consisting of 10 mg/L P as potassium dihydrogen phosphate and 50 mg/L N as ammonium chloride, The experiments were carried out using a jar-test apparatus and the measurements were performed according to the Standard Methods for the Examination of Water and Wastewater. Pure alum, iron chloride and iron sulfate were much more efficient in phosphorus removal than the spent alum sludge but in the case of calcium hydroxide, phosphorus removal was very low in pH = 6. Specifically, orthophosphate were totally removed by alum using 15 mg/L as Al, by alum sludge using 75 mg/L as Al and by FeCl3.7H2O or Fe2(SO4).10H2O using 30 mg/L of Fe while in the case of calcium hydroxide P removal was actually zero. pH measurements showed that the uptake of phosphates is associated to the release of OH ions in the solution and that the end of P uptake is accompanied by the stabilization of pH. Finally this spent alum sludge was tested on municipal wastewater and proved to be effective as apart from phosphorus it was shown to remove turbidity and COD.  相似文献   

9.
Decentralized advanced wastewater treatment using adsorption and desorption process for recovery and recycling oriented phosphorus removal was developed. Adsorbent particles made of zirconium were set in a column, and it was installed as subsequent stage of BOD and nitrogen removal type Johkasou, a household domestic wastewater treatment facility. The water quality of the effluent of adsorption column in a number of experimental sites was monitored. The effluent phosphorus concentration was kept below 1 mg l(-1) during 90 days at all the sites. Furthermore, over 80% of the sites achieved 1 mg l(-1) of T-P during 200 days. This adsorbent was durable, and deterioration of the particles was not observed over a long duration. The adsorbent collected from each site was immersed in alkali solution to desorb phosphorus. Then the adsorbent was reactivated by soaking in acid solution. The reactivated adsorbent was reused and showed almost the same phosphorus adsorption capacity as a new one. Meanwhile, the desorbed phosphorus was recovered with high purity as trisodium phosphate by crystallization. It is proposed as a new decentralized system for recycling phosphorus that paves the way to high-purity recovery of finite phosphorus.  相似文献   

10.
Phosphorus (P) is a vital but limited resource. Though Austria has no P deposits, municipal wastewater offers a potential but largely overlooked source of phosphorus. Over the last several years, numerous technologies have been developed for recovering P from various streams at a wastewater treatment plant. This work uses an approach developed by the authors to assess these technologies on the basis of technical, ecological and economic criteria, providing a basis that legislators and political decision-makers can orient a future, optimized P management system on. The study shows that e.g. technologies for recovering P from process water are already available, and that under the right circumstances they can be used to affordably deliver a high-purity, plant-available end product; however, the potential for P recovery is relatively low. In order to arrive at maximal utilization of the phosphorus from wastewater, the future focus should be on recovery from sewage sludge ash. In this regard, mixing with low-phosphorus ash should be avoided. At this time, however, the necessary structures like e.g. monoincineration plants still need to be expanded. Which technology/ technologies will ultimately be used for the treatment of sewage sludge ash depends e.g. on considerations of affordability, heavy metal elimination, and the plant-availability of the P recovered. The advantages of a strategy based on “monocombustion” of sewage sludge are on the one hand the option of using further P-rich material flows (e.g. meat and bone meal) and on the other, the freedom to store the ash for future recovery (creating an Austrian “phosphate mine”).  相似文献   

11.
Dewatered alum sludge: a potential adsorbent for phosphorus removal.   总被引:1,自引:0,他引:1  
Alum sludge refers to the by-product from the processing of drinking water in water treatment works. In this study, groups of batch experiments were designed to identify the characteristics of dewatered alum sludge for phosphorus adsorption. Air-dried alum sludge (moisture content 10.2%), which was collected from a water treatment works in Dublin, was subjected to artificial P-rich wastewater adsorption tests using KH2PO4 as a model P source. Adsorption behaviours were investigated as a function of amount and particle size of alum sludge, pH of solution and adsorption time. The results have shown that pH plays a major role not only in the adsorption process but also in the adsorption capacity. With regard to adsorption capacity, this study reveals the Langmuir adsorption isotherm being the best fit with experimental data (R2 = 0.98-0.99). The maximum adsorption capacities range from 0.7 to 3.5 mg-P/g when the pH of the synthetic P solution was varied from 9.0 to 4.3, accordingly. The outcome of this study indicated that alum sludge is suitable for use as an adsorbent for removal of phosphate from wastewater.  相似文献   

12.
This paper shows the potential application of a new sewage treatment process with technologies of excess sludge reduction and phosphorus recovery. The process incorporated ozonation for excess sludge reduction and crystallisation process for phosphorus recovery to a conventional anaerobic/oxic (A/O) phosphorus removal process. A lab-scale continuous operation experiment was conducted with the ratio of sludge flow rate to ozonation tank of 1.1% of sewage inflow under 30 to 40 mgO3/gSS of ozone consumption and with sludge wasting ratio of 0.34% (one-fifth of a conventional A/O process). Throughout the operational experiment, a 60% reduction of excess sludge production was achieved in the new process. A biomass concentration of 2300 mg/L was maintained, and the accumulation of inactive biomass was not observed. The new process was estimated to give a phosphorus recovery degree of more than 70% as an advantage of excess sludge reduction. The slight increase in effluent COD was observed, but the process performance was maintained at a satisfactory level. These facts demonstrate an effectiveness of the new process for excess sludge reduction as well as for phosphorus recovery.  相似文献   

13.
In this paper, a novel process for organic acids and nutrient recovery from municipal sludge was introduced and evaluated based on laboratory-scale studies. An economical estimation for its practical application was also performed by mass balance in a full-scale plant (Q=158,000 m3 d(-1)). This novel process comprises an upflow sludge blanket-type high performance elutriated acid fermenter (5d of SRT) for organic acids recovery followed by an upflow-type crystallisation (3 h of HRT) reactor using waste lime for nutrient recovery. In the system, the fermenter is characterised by thermophilic (55 degrees C) and alkaline conditions (pH 9), contributing to higher hydrolysis/acidogenesis (0.18 g VFA(COD) g(-1) VSS(COD), 63.3% of VFA(COD)/COD produced, based on sludge characteristics of the rainy season) and pathogen-free stabilised sludge production. It also provides the optimal condition for the following crystallisation reactor. In the process, the waste lime, which is an industrial waste, can be used for pH control and cation (Ca and Mg) sources for crystallisation reaction. A cost estimation for full-scale application demonstrates that this process has economic benefits (about 67 dollars per m3 of wastewater except for the energy expense) even in the rainy season.  相似文献   

14.
为有效回收大型水生植物发酵液中磷,选择挺水植物西伯利亚鸢尾(Iris sibirica L.)和圆币草(Hydrocotyle vulgaris)进行发酵试验,分析不同pH值下发酵液中磷回收的效率和纯度,探索羟基磷酸钙(hydroxyapatite,HAP)结晶法回收水生植物发酵液中磷酸盐的可能性。结果表明:西伯利亚鸢尾和圆币草发酵液中钙磷摩尔数比分别为2.7和10,镁磷比分别为1.4和1.6,适合采用HAP法回收磷酸盐。不同水生植物发酵液调节pH值回收磷曲线相似,在pH为8.5时西伯利亚鸢尾和圆币草发酵液磷酸盐回收率分别达到89%和91%,产生的羟基磷酸钙沉降性能良好。X射线荧光光谱分析分析结果表明pH为8.5时沉淀物中P2O5质量分数超过25%,羟基磷酸钙为主要成分。pH调节超过8.5后沉淀物中碳酸钙含量会随着pH上升而不断增加,影响羟基磷酸钙的纯度,因此,回收磷酸盐适合的pH值为8.5。  相似文献   

15.
The recovery of phosphorus from sewage and sludge treatment systems is particularly important because it is a limited resource and a large proportion of the phosphorus currently used in Japan must be imported. We have been experimentally evaluating recovery methods with sulphide. In this study, we focussed on the extraction of phosphate from the sludge, and sought to achieve a greater extraction efficiency and to validate the extraction mechanism. We conducted three experiments, i.e. a sludge-type experiment, a coagulant ratio of pre-coagulated sludge experiment, and a concentration of pre-coagulated sludge experiment. Phosphate was extracted not with normal sewage sludge but with pre-coagulated sludge and FePO4 reagent at S/Fe = 1.0-2.0. A coagulant ratio of 23mg Fe L(-1) was required in the precoagulation process to effectively extract phosphate. A high concentration of pre-coagulated sludge was required for the phosphate extraction. The mass balance was calculated, and 44.0% of phosphorus was extracted to supernatant, and 98.5% of iron and 98.3% of sulphur (44.1% of sulphur was sulphide). Thus, phosphate can be selectively separated from iron by the phosphate extraction method with NaHS, and phosphorus and iron can be recovered and reused at sewage treatment plants using ferric chloride as a coagulant.  相似文献   

16.
Removal and recovery of phosphorus from sewage in form of MAP (magnesium ammonium phosphate) have attracted attention from the viewpoint of eutrophication prevention and phosphorus resource recovery as well as scaling prevention inside digestion tanks. In this work, phosphorus recovery demonstration tests were conducted in a 50 m3/d facility having a complete mixing type reactor and a liquid cyclone. Digested sludge, having 690 mg/L T-P and 268 mg/L PO4-P, was used as test material. The T-P and PO4-P of treated sludge were 464 mg/L and 20 mg/L achieving a T-P recovery efficiency of 33% and a PO4-P crystallization ratio of 93%. The reacted phosphorus did not become fine crystals and the recovered MAP particles were found to be valuable as a fertilizer. A case study in applying this phosphorus recovery process for treatment of sludge from an anaerobic-aerobic process of a 21,000 m3/d sewage system, showed that 30% of phosphorus concentration can be reduced in the final effluent, recovering 315 kg/d as MAP.  相似文献   

17.
Recovering nitrogen and phosphorus through struvite (MgNH4PO4 6H2O) crystallization from swine wastewater has gained increasing interest. However, swine wastewater contains complex compositions, which may hinder the formation of struvite crystal and affect the purity of the precipitates by forming other insoluble minerals. In this work, experiments were carried out to evaluate struvite precipitation in the anaerobically digested swine wastewater, with dosing bittern as a low-cost magnesium source. Exceeded 90% phosphate removal and 23-29% ammonium reduction were obtained. FTIR, XRD and mass balance analysis were combined to analyze the species of precipitated minerals. Results showed that the precipitates were struvite, mixed with amorphous calcium phosphate (ACP) and brucite. The presence of Ca2+ diminished the percentage of struvite and gave rise to ACP formation. Controlling pH below 9.5 and bittern dosage above 1% (w/w) could inhibit ACP precipitation and harvest a highly pure struvite crystal product.  相似文献   

18.
This paper deals with the performances obtained in full scale anaerobic digesters co-digesting waste activated sludge from biological nutrients removal wastewater treatment plants, together with different types of organic wastes (solid and liquid). Results showed that the biogas production can be increased from 4000 to some 18,000 m3 per month when treating some 3-5 tons per day of organic municipal solid waste together with waste activated sludge. On the other hand, the specific biogas production was improved, passing from 0.3 to 0.5 m3 per kgVS fed the reactor, when treating liquid effluents from cheese factories. The addition of the co-substrates gave minimal increases in the organic loading rate while the hydraulic retention time remained constant. Further, the potentiality of the struvite crystallisation process for treating anaerobic supernatant rich in nitrogen and phosphorus was studied: 80% removal of phosphorus was observed in all the tested conditions. In conclusion, a possible layout is proposed for designing or upgrading wastewater treatment plants for biological nutrients removal process.  相似文献   

19.
Precipitation of ammonium together with phosphate and magnesium is a possible alternative for lowering the nitrogen content of wastewater. In this study we examine the removal of ammonium nitrogen and phosphorus from slurry-type swine wastewater containing high concentrations of nutrients by the addition of phosphoric acid along with either calcium oxide or magnesium oxide, which leads to the crystallization of insoluble salts such as hydroxyapatite and struvite. The struvite crystallization method showed a high capacity for the removal of nitrogen when magnesium oxide and phosphoric acid were used as the magnesium and phosphate sources, respectively. When it was applied to swine wastewater containing a high concentration of nitrogen, the injection molar ratio of Mg2+:NH4+:PO4(3-) that gave maximum ammonium nitrogen removal was 3.0:1.0:1.5.  相似文献   

20.
The aim of this study was to evaluate the feasibility of the re-use of the winery wastewater to enhance the biological nutrient removal (BNR) process. In batch experiments it was observed that the addition of winery wastewater mainly enhanced the nitrogen removal process because of the high denitrification potential (DNP), of about 130 mg N/g COD, of the contained substrates. This value is very similar to that obtained by using pure organic substrates such as acetate. The addition of winery wastewater did not significantly affect either phosphorus or COD removal processes. Based on the experimental results obtained, the optimum dosage to remove each mg of N-NO3 was determined, being a value of 6.7 mg COD/mg N-NO3. Because of the good properties of the winery wastewater to enhance the nitrogen removal, the viability of its continuous addition in an activated sludge pilot-scale plant for BNR was studied. Dosing the winery wastewater to the pilot plant a significant increase in the nitrogen removal was detected, from 58 to 75%. The COD removal was slightly increased, from 89 to 95%, and the phosphorus removal remained constant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号