首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
The kinetics of thermal dehydration of Mg3(PO4)2 · 8H2O was investigated using thermogravimetry at four different heating rates. The activation energies of the dehydration step of Mg3(PO4)2 · 8H2O were calculated through the isoconversional Ozawa and Kissinger-Akahira-Sunose (KAS) methods and iterative methods, which were found to be consistent and indicate a single mechanism. The possible conversion function of the dehydration reaction for Mg3(PO4)2 · 8H2O has been estimated through the Coats and Redfern integral equation, and a better kinetic model such as random nucleation of the “Avrami–Erofeev equation (A 3/2 model)” was found. The thermodynamic functions (ΔH*, ΔG*, and ΔS*) of the dehydration reaction are calculated by the activated complex theory and indicate that it is a non-spontaneous process when the introduction of heat is not connected.  相似文献   

2.
xSr0.7Ce0.2TiO3–(1???x)Sr(Mg1/3Nb2/3)O3 ceramics, referred to xSCT–(1???x)SMN, were successfully produced by conventional solid-state sintered technology. The compounds, belonging to perovskites with a secondary phase of CeO2, can be detected even with x down to 0.1 of SCT composition. The overall trend for grain growth illustrates the increase with increasing SCT doping level. The Raman peak at 825 cm?1 splits into two peaks and causes red shift phenomenon. XPS spectra indicate that Ti and Nb ions exist respectively in tetravalence and pentavalence, and Ce ions exist in trivalence and tetravalence. Dielectrics constant (ε r ) of SCT–SMN ceramics gradually increases with increasing theoretical dielectric polarizabilities. A wider width of the 825 cm?1 for FWHM of A1g mode Raman peaks suggests to a lower Q?×?f value. The increasing tolerance factor in agreement with temperature coefficient of resonant frequency (τ f ), denotes that the rise of perovskite symmetry. The 0.1SCT–0.9SMN ceramic sintered at 1450?°C for 4 h illustrates excellent microwave dielectric properties with ε r ?~?35.4, Q?×?f?~?11282 GHz and τ f ?~?1.7 ppm/°C. Activation energies of 0.1SCT–0.9SMN ceramic at 100, 300 and 500 V, are ~0.436, 0.427 and 0.331 eV, respectively, indicative of a decreased trend with external electric field.  相似文献   

3.
We have studied phase relations in the Sb2Se3–Nd2Se3 system and mapped out its Tx phase diagram using differential thermal analysis, X-ray diffraction, microstructural analysis, microhardness tests, and density measurements. The system contains one compound, with the composition NdSbSe3, which melts incongruently at 865 K and crystallizes in orthorhombic symmetry with the following lattice parameters: а = 12.77(1) Å, b = 14.08(1) Å, and c = 5.82(5) Å (Z = 8, ρmeas = 6.20 g/cm3, ρx = 6.38 g/cm3). At room temperature, the Nd2Se3 solubility in Sb2Se3 is 5 mol % and the Sb2Se3 solubility in Nd2Se3 is 2.5 mol %. The Sb2Se3–Nd2Se3 system has a eutectic located at 15 mol % Nd2Se3, with a melting point at 755 K. The electrical conductivity and thermoelectric power of the (Sb2Se3)1–x (Nd2Se3) x solid solutions have been measured as functions of temperature.  相似文献   

4.
A series of Pb(1+x)TiO3/PbZr0.3Ti0.7O3/Pb(1+x)TiO3 (PTO/PZT/PTO) and PbZr0.3Ti0.7O3 (PZT) thin films were prepared by a sol–gel method. Different excess Pb content (x) (x = 0, 0.05, 0.10, 0.15, 0.20) were added to the PbTiO3 (PTO) precursors to investigate their effect on ferroelectric and fatigue properties of the PTO/PZT/PTO thin films. X-ray diffraction results show that the crystallization behavior of the PTO/PZT/PTO thin films is greatly affected by the excess Pb content (x) in PTO precursors. Topographic images show that the PTO/PZT/PTO thin films with excess Pb content x = 0.10 appears the densest and the most uniform grain size surface morphology. The ferroelectric and fatigue properties of the films correlate straightforwardly to the crystallization behaviors and excess Pb content (x) in the PTO precursors. The excess Pb content (x) in the PTO layers which acts as a nucleation site or seeding layer for PZT films affects the crystallization of the PTO layer and ultimately affects the perovskite phase formation of the PZT films. With the proper excess Pb content (x = 0.10–0.15) in the PTO precursors, the pure perovskite structure PTO/PZT/PTO thin films, with dense, void-free, and uniform fine grain size are obtained, and a well-saturated hysteresis loop with higher remnant polarization is achieved. Using an appropriate Pb content, the fatigue has been avoided by controlling the inter-diffusion and surface volatilization.  相似文献   

5.
Mechanical treatment of Fe2O3, Al and Fe powder mixtures was carried out in a high energy ball mill to synthesize Fe3Al–Al2O3 intermetallic matrix nanocomposite. Different compositions including 3Fe + Al, Fe2O3 + 2Al, 3Fe2O3 + 8Al and Fe2O3 + 3Al+Fe were chosen in this study. Phase development and structural changes occurring during ball milling were investigated by X-ray diffractometry (XRD) and scanning electron microscopy (SEM). The results showed that during MA, Fe2O3, Al, and Fe react to give a nanocrystalline Fe3Al intermetallic compound matrix. The presence of pure Fe in initial powder mixture changed the modality of mechanochemical process from sudden to gradual reaction. The Fe3Al–Al2O3 compound had a finer microstructure and particles size compared to the Fe3Al compound.  相似文献   

6.
Gadolinium doped bismuth borate glasses containing up to 30 mol% Y2O3 were prepared by fast melt quenching method. The effect of yttrium on the local order in 3B2O3 · Bi2O3 and B2O3 · Bi2O3 glass matrices, particularly on the bismuth sites, was investigated by infrared (IR) spectroscopy and electron paramagnetic resonance (EPR) of Gd3+ ions. The IR results show that the local structure is more ordered in the glass system with higher bismuth content and the progressive addition of yttrium increases the local disorder in both bismuth–borate glass matrices. The EPR results indicate that Gd3+ ions occupy both bismuth and yttrium sites and reflect the same structural disorder like that suggested by IR results.  相似文献   

7.
The influences of Bi substitution on microwave dielectric properties of Ba4(La0.5Sm0.5)9.33Ti18O54 solid solutions were investigated. Dielectric ceramics with general formula Ba4(La(0.5−z)Sm0.5Bi z )9.33Ti18O54, z = 0.0–0.2 were prepared by conventional solid state route. The structural analysis of all the samples was carried out by X-ray diffraction and scanning electron microscopy. The dielectric properties were investigated as a function of Bi contents using open-ended coaxial probe method in the frequency range 0.3–3.0 GHz at room temperature. Dielectric constant varies from 83 to 88 and loss tangent from 2.1 × 10−3 to 5.5 × 10−3 at 3 GHz with temperature coefficient of resonant frequency changing from 106.7 to −8.4 ppm/oC as Bi contents increases from z = 0.00–0.20. It has been found that dielectric constant and temperature coefficient of resonant frequency improve whereas loss tangent is adversely affected with increase in Bi substitution.  相似文献   

8.
Catalytic combustion of methane was investigated on Pt and PdO-supported CeO2–ZrO2–Bi2O3/γ-Al2O3 catalysts prepared by a wet impregnation method in the presence of polyvinylpyrrolidone. The catalysts were characterized by X-ray fluorescence analysis, X-ray powder diffraction, X-ray photoelectron spectra, transmission electron microscopy, and BET specific surface area measurements. The Pt/CeO2–ZrO2–Bi2O3/γ-Al2O3 and PdO/CeO2–ZrO2–Bi2O3/γ-Al2O3 catalysts were selective for the total oxidation of methane into carbon dioxide and steam, and no by-products such as HCHO, CO, and H2 were obtained. The catalytic activities of the PdO/CeO2–ZrO2–Bi2O3/γ-Al2O3 catalysts were relatively higher than those of the Pt-supported catalysts, due to the facile re-oxidation of metallic Pd into PdO based on lattice oxygen supplied from the CeO2–ZrO2–Bi2O3 bulk. A decrease in the calcination temperature during the preparation process was found to be effective in enhancing the specific surface area of the catalysts, whereby particle agglomeration was inhibited. Optimization of the PdO amount and calcination temperature enabled complete oxidation of methane at temperatures as low as 320 °C on the 11.6 wt% PdO/CeO2–ZrO2–Bi2O3/γ-Al2O3 catalyst prepared at 400 °C.  相似文献   

9.
The kinetics of spontaneous demagnetization in nanoparticles of the exotic epsilon-phase of indium-doped iron(III) oxide (ε-In0.24Fe1.76O3) has been studied using the method of accelerated testing of magnets for temporal stability in a magnetization-reversal field. Time dependences of the magnetization of nanoparticles measured in a wide range of magnetic fields exhibited rectification in semilogarithmic coordinates. The dependence of the magnetic viscosity on the magnetic field has been measured and used for determining the fluctuation field and activation volume. A relationship between the magnetic viscosity and magnetic noise caused by random thermoinduced magnetization reversal in separate nanoparticles is established.  相似文献   

10.
New lead-free ceramics (1–x)NaNbO3–xBi0.5K0.5TiO3 have been fabricated by the conventional ceramic sintering technique, and their ferroelectric and piezoelectric properties have been studied. The results of X-ray diffraction reveal that Bi0.5K0.5TiO3 diffuses into the NaNbO3 lattices to form a new perovskite-type solid solution with orthorhombic symmetry. The addition of a small amount of Bi0.5K0.5TiO3 (x ≥ 0.025) transforms the ceramics from antiferroelectric to ferroelectric. The ceramic with x = 0.10 possesses the largest remanent polarization P r and thus exhibits the optimum piezoelectric properties, giving d 33 = 71 pC/N, k p = 16.6% and k t = 39.7%. The ceramics with low doping level of Bi0.5K0.5TiO3 are normal ferroelectrics and the ferroelectric-paraelectric phase transition becomes diffusive gradually with the doping level x of Bi0.5K0.5TiO3 increasing. Our results show the (1–x)NaNbO3–xBi0.5K0.5TiO3 ceramics is one of the good candidates for lead-free piezoelectric and ferroelectric materials.  相似文献   

11.
A series of quasi-multilayers of YBa2Cu3O7?δ (YBCO)/Y2O3 specifically 70 × (m YBCO/n Y2O3) were prepared on SrTiO3 single crystal using pulsed-laser deposition (PLD) with a controlled deposition pulses of m = 40 and n = 2, 5, and 10 for YBCO and Y2O3, respectively. The x-ray diffraction patterns indicate that all the present quasi-multilayers exhibit good c-axis orientation. The angular dependence of critical current density (J c ) on applied magnetic field directions are systemically measured to study the anisotropic vortex pinning performances for those quasi-multilayers. It is revealed that compared with the pure YBCO films, the quasi-multilayers with n = 2, i.e., a proper constituent pulse of Y2O3, exhibits the enhanced vortex pinning abilities in all angles between c-axis orientation and the applied magnetic field direction. As well, such a quasi-multilayer film (n = 2) shows the higher lift factor J c (Θ)/ J c (90°) and much better vortex pinning properties at high fields and high temperatures, showing promising potential for coated conductor application.  相似文献   

12.
The purpose of this work is to study the optical properties and crystallization of glasses in the ternary system Bi2O3–MoO3–B2O3. In order to verify the obtaining of bismuth borate crystal phases several glass compositions have been selected for crystallization. The obtained samples were characterized by X-ray diffraction, scanning electron microscopy and UV–Vis spectroscopy. The UV–Vis spectroscopy showed that the obtained glasses are transparent in the visible region. The values of optical band gap (E opt) and changes in cut-off (λc) depending on composition are reported. It was established that the increase in the MoO3 content led to decreasing the transmittance of the glasses. Moreover, the absorption edge shifts towards longer wavelength.  相似文献   

13.
Lead-free (K0.48Na0.52)(W2/3Bi1/3)xNb1−xO3 (KNN-WBi) piezoceramics with x ranging from 0.004 to 0.010 were synthesized by conventional ceramic processing. The sintered KNN-WBi ceramics showed perovskite structure without detectable secondary phase containing W and Bi. With increasing x, the orthorhombic-tetragonal phase transition temperature (T O-T) decreased from 200 to 184 °C whereas, the tetragonal-cubic phase transition temperature (T C) decreased slightly. With the doping of (W2/3Bi1/3), the piezoelectric properties were greatly improved and the piezoelectric constants d 33, k p, Q m exhibited maximum values of 136 pC/N, 43.3% and 175, respectively at x = 0.008. The KNN-WBi ceramics also exhibited good ferroelectric properties with remnant polarizations P r higher than 25 μC/cm2 and coercive fields E c lower than 1,000 V/mm. The results strongly suggest that the B site doping of constructed quinquevalent element is an effective method for the investigation of potassium sodium niobate system.  相似文献   

14.
Differential thermal analysis and x-ray diffraction data indicate that the ZnO B2O3-CuO B2O3 join of the ternary system CuO-B2O3-ZnO is pseudobinary, with eutectic phase relations and a liquid-liquid miscibility gap in the composition range 25–35 mol % CuO.Translated from Neorganicheskie Materialy, Vol. 41, No. 3, 2005, pp. 339–340.Original Russian Text Copyright © 2005 by Kasumova, Bananyarly.This revised version was published online in April 2005 with a corrected cover date.This revised version was published online in April 2005 with a corrected cover date.  相似文献   

15.
The dc conductivity of the glasses in the Fe2O3-Bi2O3-K2B4O7 system was studied at temperatures between 223 and 393 K. At temperatures from 300 to 223 K, T–1/4 (T is temperature) dependence of the conductivity was found, however, both Mott variable-range hopping and Greaves intermediate range hopping models are found to be applicable. Mott and Greaves parameters analysis gave the density of states at Fermi level N (EF) = 3.13 × 1020–21.01 × 1020 and 1.93 × 1021–16.39 × 1021 cm–3eV–1 at 240 K, respectively. The variable-range hopping conduction occurred in the temperature range T = 300–223 K, since WD was found to be large (WD = 0.08–0.14 eV for these glasses) and dominated the conduction at T < 300 K.  相似文献   

16.
We have studied the effect of Bi(Mg0.5Ti0.5)O3 additions on the phase formation, structural parameters, microstructure, and dielectric properties of solid solutions in the region of a morphotropic phase boundary in the BiFeO3–BaTiO3 system. Single-phase samples with the perovskite structure have been obtained and the addition of Bi(Mg0.5Ti0.5)O3 has been shown to raise the Curie temperature of the ceramics and improve their dielectric properties.  相似文献   

17.
The structure, microstructure, field-induced strain, ferroelectric, piezoelectric and dielectric properties of (1 ? x) (Bi0.5Na0.5)0.935Ba0.065TiO3–xSr3CuNb2O9 (BNT-BT6.5–xSCN, with x = 0, 0.003, 0.006, 0.009) ceramics were investigated. X-ray diffraction patterns show that all samples are pure perovskite structure and Sr3CuNb2O9 (SCN) effectively diffused into the 0.935Bi0.5Na0.5TiO3–0.065BaTiO3 (BNT–BT6.5) solid solution which also reflected in the Raman spectra and the energy disperse spectroscopy (EDS) analysis. With the increases of SCN content, the coercive field (E c  = 18.41 kV/cm) decreases greatly, whereas the remnant polarization (P r  = 29.11 μC/cm2) increases a little at x = 0.003 which is showed in the polarization hysteresis (PE) loops, the result indicate that the ferroelectric order would be disrupted. Around critical composition (x = 0.003) at a driving field of 60 kV/cm, a large unipolar strain of 0.29 % with a normalized strain (d 33 *  = 483 pm/V) is obtained at room temperature. The results indicate that BNT-BT6.5-xSCN ceramics with excellent properties are promising to replace lead-based piezoelectric ceramics and can be used in practical applications.  相似文献   

18.
The (1−x) Ba0.40Sr0.60TiO3 (BST)−xZr0.80Sn0.20TiO4 (ZST) composite ceramics with x = 10, 20, 30, and 40 wt% were fabricated by conventional solid-state reaction method. With increasing of ZST content, the dielectric constant of composite ceramics was decreased and dielectric loss increases. The effect of ZnO addition to 70 wt% BST–30 wt% ZST composition on the microstructure and dielectric properties was investigated. The improvements in dielectric constant, dielectric loss, and microwave dielectric properties of composite ceramics can be achieved by ZnO addition. The sample with 98 wt% (70 wt% BST–30 wt% ZST)–2 wt%ZnO composition exhibits promising dielectric properties, with dielectric constant, loss tangent and tunability at 4 kV/mm, of 125, 0.0016 and 12%, at 10 kHz and room temperature. At ~2 GHz, it possesses a dielectric constant of 101 and a Q factor of 187, which makes it a good candidate for tunable microwave device applications.  相似文献   

19.
New ternary (1−x)K0.5Na0.5NbO3x(0.80LiSbO3–0.20CaTiO3) lead-free ceramics were fabricated by a conventional ceramic technique and their structure and piezoelectric properties were studied. The results of X-ray diffraction reveal that LiSbO3 and CaTiO3 diffuse into the K0.5Na0.5NbO3 lattices to form a new solid solution with a perovskite structure. After the addition of LiSbO3 and CaTiO3, the cubic-tetragonal and tetragonal-orthorhombic phase transitions shift to lower temperatures. Coexistence of the orthorhombic and tetragonal phases is hence formed in the ceramics with 0.03 < x < 0.07 at room temperature, leading to a significant enhancement of the piezoelectric properties. For the ceramics with x = 0.04–0.06, the piezoelectric properties become optimum: d 33 = 172–253 pC/N, k P = 49.9–55.5%, k t = 49.2–52.1% and T C = 348–373 °C. The ceramic with x = 0.04 also exhibits a good thermal stability of piezoelectric properties.  相似文献   

20.
The (100) oriented and random oriented 0.755Bi0.5Na0.5TiO3–0.065BaTiO3–0.18SrTiO3 (BNT–BT–ST) thin films were deposited on LaNiO3 (LNO) buffered Pt(111)/Ti/SiO2/Si substrates by the sol–gel processing technique. The orientation is controlled by the concentration of solution. The structure, dielectric and piezoelectric properties of the thin films are significantly affected by the crystallographic orientation. The (100) oriented BNT–BT–ST thin film has improved dielectric and piezoelectric properties. For the (100) oriented and random oriented BNT–BT–ST thin films, the dielectric constants are 660 and 550, the dielectric losses are 0.045 and 0.076 and the effective piezoelectric coefficients are 140 and 110 pm/V, respectively. The large piezoelectric response is attributed to the uniform microstructure and increased lattice distortion along (100) direction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号