首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The minimum sequence lengths (nc) of vinyl acetate (VAc) units necessary to form a colored iodine complex were determined to be 4 and 17 for radically polymerized VAc/vinyl propionate (VPr) and VAc/isopropenyl acetate (IPAc) copolymers, respectively. The iodine affinities (I/VAc) of VAc/VPr copolymers (SP-series) obtained by propionylation of partially saponified polyvinyl acetate (PVAc) were remarkably affected by the saponification conditions. An increase of the water content in acetone/water mixture as saponification solvent brought about a decrease of the iodine affinities of the SP-series. The dependence of the iodine affinity on the saponification of monomer units in the SP-series was compared with that in the radically polymerized VAc/VPr copolymers by taking the sequence probability as the measure of monomer unit distribution. The results strongly supported an occurence of the slide fastener reaction at high degrees of saponification, which was well-known in the saponification of PVAc. Furthermore, it was found that the saponification mode of PVAc at low degrees of saponification was influenced uniquely by the water content in saponification solvents and the saponification temperature.  相似文献   

2.
Poly(vinyl propionate) was found to form a weak iodine-complex in an aqueous solution of potassium iodide. The complex was colorless under usual conditions differing from the poly(vinyl acetate)iodine complex which had a red-violet colour. Random and block copolymers of vinyl acetate (VAc) and vinyl propionate (VPr) also formed colored iodine complexes. The maximum absorption wave-length (λmax) of the complex shifted to shorter wave-lengths with decrease in the VAc-fraction of copolymers and to longer wave-lengths with increase in the concentration of added iodine. This shift of λmax was discussed in connection with the chain length of the polyiodine in the complex. The molar absorption coefficient (?max) of the complex (defined as absorbance per bound iodine molecule) depended remarkably upon the polymer composition. The dependence of ?max upon the copolymer composition could be explained by the assumption that the complex consists of two different parts, a strongly colored and a weakly colored one.  相似文献   

3.
Reversible addition–fragmentation chain transfer miniemulsion (co)polymerizations of vinyl acetate (VAc) and vinyl chloride (VC) are conducted in the presence of a fluorinated xthanate (X1). VAc miniemulsion polymerization can be well controlled by X1, and PVAc with small polydispersity index (PDI, <1.20) are obtained. X1 also shows well mediative effect to VC‐VAc miniemulsion copolymerization, while the PDI of VC‐VAc copolymer is greater than that of PVAc since a chain transfer rate to VC is greater than that to VAc. PVAc‐b‐PVC copolymers are synthesized by VC miniemulsion polymerizations mediated by X1‐terminated PVAc. PDIs of PVAc‐b‐PVC copolymers are greater than that of PVAc and VC‐VAc random copolymers with close monomer compositions, and increase with the increase of VC conversion. This is caused by the increased chain transfer to monomer and the formation of monomer‐rich and polymer‐rich phases during the VC polymerization stage. As‐prepared PVAc‐b‐PVC copolymers exhibit a micro‐phase separated morphology. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45074.  相似文献   

4.
The specific retention volumes of nine hydrocarbons and 12 alcohols were measured at several temperatures within the range 120–150°C in columns whose stationary phases were poly(vinyl acetate) (PVAc) and four copolymers of vinyl acetate and vinyl alcohol with 94.8, 74.4, 60.9, and 43.4 mol % of vinyl acetate units (mol % VAc). No chromatographic retention for hydrocarbons was detected in columns loaded with poly(vinyl alcohol) (PVA) or a copolymer with 11.9 mol % VAc. The retention trends are discussed and the polymers solubility parameters (δ2) were computed from the measured Flory–Huggins χ parameters. The copolymers δ2 values increase almost linearly with decreasing mol % VAc; PVAc, however, has a distinct behavior. The limitations of the approach in the prediction of χ parameters are discussed.  相似文献   

5.
黄志辉  包永忠  潘鹏举 《化工学报》2017,68(6):2569-2576
合成了含黄原酸酯端基的聚乙二醇(X-PEG-X)大分子链转移剂,并以其为可逆加成-断裂链转移试剂调控氯乙烯(VC)溶液和悬浮聚合,合成聚氯乙烯-b-聚乙二醇-b-聚氯乙烯(PVC-b-PEG-b-PVC)三嵌段共聚物。X-PEG-X调控VC溶液聚合得到的共聚物的分子量随聚合时间增加而增大,分子量分布指数小于1.65。X-PEG-X具有水/油两相分配和可显著降低水/油界面张力的特性,以X-PEG-X为链转移剂和分散剂,通过自稳定悬浮聚合也可合成PVC-b-PEG-b-PVC共聚物,共聚物颗粒无皮膜结构,分子量随聚合时间增加而增大;由于VC悬浮聚合具有聚合物富相和单体富相两相聚合特性,共聚物分子量分布指数略大于溶液聚合共聚物。通过乙酸乙烯酯(VAc)扩链反应进一步证实了PVC-b-PEG-b-PVC的“活性”,并合成PVAc-b-PVC-b-PEG-b-PVC-b-PVAc共聚物。水接触角测试表明PVC-b-PEG-b-PVC的亲水性优于PVC。  相似文献   

6.

Abstract  

The synthesis of new poly(ε-caprolactone)(PCL)-b-poly(vinyl acetate)(PVAc) block copolymers was investigated using different combinations of click chemistry, reversible addition-fragmentation transfer (RAFT), and ring opening polymerization (ROP) techniques. Two approaches, “coupling” and “macroinitiator” routes were studied. For the coupling approach, a chain transfer agent comprising an azide function was synthesized and used as initiator for the VAc polymerization. PCL containing an alkyne termination was obtained from a bifunctional initiator bearing an alkyne function and an hydroxyl group. These two functionalized precursors, PVAc and PCL, were coupled by a 1,3 cyclo addition reaction “click chemistry” in order to obtain the corresponding block copolymer. For the macroinitiator approach, PCL-b-PVAc block copolymers were synthesized using a two-step procedure: at first, a PCL macroinitiator with a xanthate end group was prepared by coordinated anionic polymerization of ε-caprolactone; then, the RAFT polymerization of VAc was initiated from the PCL, for the preparation of PCL-b-PVAc block copolymers. Whatever the method used, no detectable quantities of unreacted PVAc or PCL were observed. 1H NMR and size exclusion chromatography analyses indicated successful synthesis of the block copolymers with well-defined structures.  相似文献   

7.
Copper‐mediated atom transfer radical polymerization (ATRP) is versatile for living polymerizations of a wide range of monomers, but ATRP of vinyl acetate (VAc) remains challenging due to the low homolytic cleavage activity of the carbon‐halide bond of the dormant poly(vinyl acetate) (PVAc) chains and the high reactivity of growing PVAc radicals. Therefore, all the reported highly active copper‐based catalysts are inactive in ATRP of VAc. Herein, we report the first copper‐catalyst mediated ATRP of VAc using CuBr/2,2′:6′,2″‐terpyridine (tPy) or CuCl/tPy as catalysts. The polymerization was a first order reaction with respect to the monomer concentration. The molecular weights of the resulting PVAc linearly increased with the VAc conversion. The living character was further proven by self‐chain extension of PVAc. Using polystyrene (PS) as a macroinitiator, a well‐defined diblock copolymer PS‐b‐PVAc was prepared. Hydrolysis of the PS‐b‐PVAc produced a PS‐b‐poly(vinyl alcohol) amphiphilic diblock copolymer. © 2009 American Institute of Chemical Engineers AIChE J, 2009  相似文献   

8.
A photopolymerization process at room temperature was devised to copolymerize vinyl acetate (VAc) and n‐butyl acrylate (BA) mainly to prepare rubber‐like damping sheet bearing pressure‐sensitive adhesive property in this study. The investigations using both the differential scanning calorimeter and rheometric dynamic analysis show the existence of two glass transition temperatures for each copolymer. The scanning electron microscopic pictures reveal that the degree of microphase separation increases with increasing annealing time at 70°C. It was suggested that the rubbery domain (formed by the PBA blocks) disperses in the glassy domain (constituted by the PVAc blocks), making an effective damping entity. Excellent damping was observed for the copolymer samples, with the tanδ peak values as high as 1.76–1.80 at a certain temperature range and with tanδ> 0.3 at quite wide temperature ranges. In addition, the copolymers containing more VAc tend to have the higher damping. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 1396–1403, 2004  相似文献   

9.
The determination of the composition of vinyl acetate (VAc) - vinyl propionate (VPr) copolymers has been studied by infrared (IR) and nuclear magnetic resonance (NMR) analyses. The monomer reactivity ratios for the copolymerization of VAc and VPr obtained by NMR analysis were very close to those obtained by IR analysis. Both methods appeared to be extremely rapid and accurate.  相似文献   

10.
Modified poly (vinyl acetate) copolymers with epoxidized linseed oil (ELO) as co‐monomer have been prepared. The polymerization was performed in aqueous medium without any additional protective colloid in the presence of sodium persulfate as catalyst. The effect of vinyl acetate (VAc)/ELO feed ratio, reaction temperature, reaction time, and catalyst amount has been studied. FTIR spectroscopy showed that the reaction between ELO and VAc resulted in slight decrease and shift in ELO characteristic bands of oxirane groups; and new bands were detected in the copolymer spectra attributed to PVAc and ELO functional groups. Moreover, new signals attributable to the copolymer were observed in the 1H NMR spectra (δ 4.07 and 1.62 ppm) and in the 13C NMR spectra (δ 15.29 and 31.0 ppm). Analysis by differential scanning calorimetry (DSC) showed a single Tg for the copolymerization product of VAc and ELO and two Tg for the PVAc/ELO blend, indicating the chemical reaction between VAc and ELO. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42089.  相似文献   

11.
Homo‐ and copolymers of vinyl esters including vinyl acetate (VAc) and vinyl benzoate (VBz) were synthesized via the reverse iodine transfer radical polymerization technique. Polymerization was carried out in the presence of iodine as the in situ generator of the transfer agent and 2,2′‐azobis(isobutyronitrile) as the initiator at 70 °C. Reverse iodine transfer radical homopolymerization of VAc and VBz led to conversions of 76 and 57%, number‐average molecular weights of 8266 and 9814 g mol?1 and molecular weight distributions of 1.58 and 1.49, respectively. The microstructure of the synthesized polymers was investigated in detail using gel permeation chromatography, 1H NMR, 13C NMR and distortionless enhancement of polarization transfer (135° decoupler pulse) techniques. Relatively narrow molecular weight distribution and controlled and predictable trend of molecular weight versus conversion were observed for the synthesized polymers, showing that reverse iodine transfer radical homo‐ and copolymerization of VAc and VBz proceeded with controlled characteristics. Results of molecular weight and its distribution along with the 1H NMR spectra recorded for homo‐ and copolymers indicated that side reactions can occur during the course of polymerization with a significant contribution when VAc, even in a small amount, was present in the reaction mixture. This can result in polymer chains with aldehyde dead end and broadening of the molecular weight distribution. © 2015 Society of Chemical Industry  相似文献   

12.
Radiation-induced grafting of vinyl acetate (VAc) onto poly(vinyl chloride) (PVC) was performed in solution with dimethylformamide (DMF). Grafting was studied as a function of dose, dose rate, and VAc/PVC ratio. The amount of grafting was measured by IR spectroscopy on the graft copolymer fraction insoluble in hot methanol. The homopolymerization of VAc was also studied in the same conditions, in order to check the influence of the solvent on radiochemical reactions leading to graft copolymers. The results show that the grafting can be easily obtained and the graft copolymer will be tested for the preparation of ultrafiltration membranes.  相似文献   

13.
Red complex formation between poly(vinyl alcohol-vinyl acetate) with iodine was investigated from the standpoint of its application as a measure of sequence distribution in the copolymer. Defining a parameter Y which means a ratio of the bound triiodide ion to the VAc unit in a copolymer, we could relate the Y value to the sequence probabilities. Sequence probabilities have also been evaluated by differential thermal analysis. Comparing the probabilities obtained from both methods, the iodine complexation method is concluded to be a complementary method with thermal analysis, that is, the iodine complexation method is applicable to the VAc unit-rich copolymers, in which the melting point cannot be measured by the thermal analysis.  相似文献   

14.
Poly(vinyl acetate) (PVAc) was added to the crystalline blends of poly(ethylene oxide) (PEO) and poly(L ‐lactide) (PLLA) (40/60) of higher molecular weights, whereas diblock and triblock poly(ethylene glycol)–poly(L ‐lactide) copolymers were added to the same blend of moderate molecular weights. The crystallization rate of PLLA of the blend containing PVAc was reduced, as evidenced by X‐ray diffraction measurement. A ringed spherulite morphology of PLLA was observed in the PEO/PLLA/PVAc blend, attributed to the presence of twisted lamellae, and the morphology was affected by the amount of PVAc. A steady increase in the elongation at break in the solution blend with an increase in the PVAc content was observed. The melting behavior of PLLA and PEO in the PEO/PLLA/block copolymer blends was not greatly affected by the block copolymer, and the average size of the dispersed PEO domain was not significantly changed by the block copolymer. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 82: 3618–3626, 2001  相似文献   

15.
The free radical polymerization of vinyl acetate in the presence of a liquid polysulfide H(SCH2CH2OCH2OCH2CH2S)nH (thiocol) was investigated from the point of view of reaction mechanism and characterization of the resulting copolymers. It was shown that, besides the thiol end groups that were consumed very rapidly, the disulfide groups within the thiocol chain were also involved in chain transfer processes. The chain transfer constant of the thiocol S–S groups in the polymerization reaction was estimated from their rate of consumption versus the rate of monomer consumption (CT = 0.89). The resulting copolymers, made up of randomly distributed thiocol sequences and PVAc blocks, were characterized by 1H NMR, GPC, DSC and TGA measurements. The copolymers displayed only one glass transition each, which decreased as the PVAc block length decreased, while their thermal stability was lower than that of both thiocol and PVAc. The molecular weight of the copolymers increased with VAc conversion as a consequence of the insertion of PVAc blocks within the thiocol chain.  相似文献   

16.
Poly(ethylene terephthalate) (PET) fibers were grafted with poly(vinyl acetate) (PVAc) and poly(vinyl alcohol) (PVA). The effects of graft copolymers PVAc and PVA on morphological properties of PET were evaluated by differential thermal analysis, differential scanning calorimetry, and thermogravimetric analysis. Melting temperature, heat of fusion, and mass fractional crystallinity of PET was not affected by graft PVAc and PVA. No individual glass transition and melting points corresponding to the graft PVAc and PVA were observed, indicating thereby that graft copolymer mainly exists in the form of free chains inside the PET matrix. Poly(vinyl alcohol) graft copolymer degraded at much lower temperatures than poly(vinyl alcohol) in powder form. Thermal stability of PET fiber was not affected by graft PVAc, where as PET–g–PVA showed an additional degradation point at 360°C.  相似文献   

17.
A novel emulsion copolymer of vinyl acetate (VAc) and 1‐hexene was synthesized at ambient pressure. The feeding technique, initiation system and reaction time of the copolymerization were optimized based on molecular characteristics such as the weight contribution of 1‐hexene in the copolymer chains and glass transition temperature (Tg) as well as on bulk properties like minimum film‐formation temperature (MFFT) and solid content. According to nuclear magnetic resonance spectroscopy and differential scanning calorimetry results, the combination of starve feeding and redox initiation, within a reaction time of 4 h, effectively led to the copolymerization at ambient pressure between highly reactive polar VAc monomers and non‐polar 1‐hexene monomers of low reactivity. The copolymer showed a lower Tg and MFFT, and a reasonable solid content compared to the poly(vinyl acetate) (PVAc) homopolymer. The consumption rate, hydrolysis of acetate groups and chain transfer reactions during the polymerization were followed using infrared spectroscopy. Based on the results, the undesirable reactions between the VAc blocks were hindered by the neighbouring 1‐hexene molecules. Tensile testing revealed an improvement in the toughness and elongation at break of VAc–1‐hexene films compared to PVAc films. © 2014 Society of Chemical Industry  相似文献   

18.
Poly(vinyl acetate) (PVAc) could be dissolved in CO2 at a high pressure, which limits its application. In this work, the PVAc-polyether block copolymers were constructed by introducing the CO2-philic blocks poly(propylene oxide) (PPO) and poly(ethylene oxide) (PEO) into the PVAc molecules to increase the solubility of these polymers in supercritical CO2 (scCO2). The dissolution behaviors of PVAc-polyether copolymers with different structures in scCO2 were investigated by the molecular dynamic simulation methods. First, the cohesive energy and solubility parameters of PVAc, PVAc-PEO, and PVAc-PPO copolymers were analyzed. Moreover, the mechanism of PVAc-polyether copolymers dissolving in CO2 was investigated. The results show that PVAc-PPO molecules have a higher solubility in CO2 because they have lower polymer–polymer and higher polymer-CO2 interactions than PVAc and PVAc-PEO. Among the three structures of PVAc-PPO molecules, PVAc-PPO-PVAc (VPV) has a highest solubility in CO2. Therefore, the molecular composition and structure have greatly influences on the interactions of polymer and CO2.  相似文献   

19.
Two types of maleic acid diesters, dibutyl maleate (DBM) and dioctyl maleate (DOM) were used as comonomers in semicontinuous emulsion copolymerization of vinyl acetate (VAc) in order to improve the film properties of poly(vinyl acetate), PVAc emulsion polymer. The effects of the comonomer type and comonomer ratio on minimum film forming temperature (MFFT), glass transition temperature (Tg), polymer structure, molecular weights, water contact angle and water resistance of PVAc latex films were examined. It was found that MFFT and Tg of the PVAc emulsion polymer decreased by the presence of the maleic acid disters in copolymer composition. This decrease was more affected by the increasing content and alkyl chain length of the comonomers. The molecular weights of the emulsion polymers were also affected by the comonomers and their ratios. Moreover, hydrophobicity and water resistance of the PVAc latex films were increased by using DBM and DOM as comonomer.  相似文献   

20.
13C nuclear magnetic resonance (n.m.r.) spectroscopy was used for the determination of the sequence distribution in vinyl alcohol-vinyl propionate (VAL-VP) copolymers prepared by two different methods: by partial alkaline hydrolysis of poly(vinyl propionate) and by partial esterification of poly(vinyl alcohol). The 13C n.m.r. spectra of the methylene carbons in the main chain show three split peaks, whose intensities change with copolymer composition. These peaks can be assigned to the three dyad sequences. The results obtained show that vinyl propionate units have an alternating tendency in VAL-VP copolymers prepared by esterification and a block distribution in VAL-VP copolymers prepared by hydrolysis. The Tg values of VAL-VP copolymers prepared by the two different methods are influenced by both the overall copolymer composition and the monomer sequence distribution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号