首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Relaxor perovskite ferroelectric 0.1Bi(Zn1/2Zr1/2)O3-0.9BaTiO3(0.1BZZ-0.9BT) ceramics were successfully prepared, whose powders synthesized by the sol-gel process, with average grain size about 1.29 μm. 1.75 J/cm3 discharge energy density and good dielectric stability were obtained over a wide temperature range from 25°C to 140°C. The pulse discharge capability of 0.1BZZ-0.9BT ceramics was tested under different electric fields. The discharge time was 2.13 μs, which proved its ability to charge and discharge quickly. Complex impedance analysis and thermally stimulated depolarization current tests were applied to investigate the defect types and activation of 0.1BZZ-0.9BT ceramics. The evolution process of composite defects and oxygen vacancies profoundly affects the dielectric temperature stability of 0.1BZZ-0.9BT ceramics’ energy storage property.  相似文献   

2.
The microstructure, phase structure, ferroelectric, and dielectric properties of (1?x)Bi0.5Na0.5TiO3xNaNbO3 [(1?x)BNT‐xNN] ceramics conventionally sintered in the temperature range of 1080°C–1120°C were investigated as a candidate for capacitor dielectrics with wide temperature stability. Perovskite phase with no secondary impurity was observed by XRD measurement. With increasing NN content, (1?x)BNT‐xNN was found to gradually transform from ferroelectric (x = 0–0.05) to relaxor (x = 0.10–0.20) and then to paraelectric state (x = 0.25–0.35) at room temperature, indicated by PIE loops analysis, associated with greatly enhanced dielectric temperature stability. For the samples with x = 0.25–0.35, the temperature coefficient of capacitance (TCC) was found <11% in an ultra‐wide temperature range of ?60°C–400°C with moderate dielectric constant and low dielectric loss, promising for temperature stable capacitor applications.  相似文献   

3.
We firstly reported the electrocaloric properties in relaxor (1−xy)NaNbO3yBaTiO3xCaZrO3 ceramics, and high electrocaloric effect (∆T ~0.451 K and∣∆T/∆E∣~0.282 Km/MV) can be realized in the ceramics (= 0.04 and = 0.10) under low temperature and low electric field. Relaxor behavior of NaNbO3 ceramics can be found by doping both BaTiO3 and CaZrO3. In addition, optimized piezoelectric effects (d33 ~235 pC/N and d33* ~230 pm/V) can be observed in the ceramics (= 0.04 and = 0.10) due to the involved morphotropic phase boundary (MPB). Excellent piezoelectric effect (ie, d33~330 pm/V at 41°C, and d33*~332 pm/V at 60°C) can be found because of the characteristics of MPB. Good temperature reliability of piezoelectric effect can be shown because of both MPB and relaxor behavior. We believe that the ceramics with high electrocaloric effect and good piezoelectric effect can be considered as one of the most promising lead-free materials for piezoelectric devices.  相似文献   

4.
(1?x)BaTiO3xK0.5Bi0.5TiO3 (abbreviated as BT–KBT, 0.10≦x≦0.15) dielectric ceramics were prepared by a conventional oxide mixing method. The effects of KBT content on the densification, microstructure and dielectric properties of BT ceramics were investigated. The density characterization results show that the addition of KBT significantly lowered the sintering temperature of BT ceramics to about 1280 °C. The XRD results showed that the phase compositions of all samples were pure tetragonal phases. The dielectric constant and dielectric loss firstly increased and then decreased with the increase of KBT. In addition, dielectric constant and dielectric loss versus frequency were characterized in the frequency range from 100 Hz to 2 MHz. It is found that the dielectric constant and the dielectric loss changed with the increase of KBT contents regularly.  相似文献   

5.
Ceramic-based dielectric capacitor are highly suitable for pulsed power applications due to their high power density and excellent reliability. However, the ultrahigh applied electric field limit their applications in integrated electronic devices. In this work, (1−x){0.96(Bi0.5Na0.5)(Ti0.995Mn0.005)O3-0.04BiAlO3}-xNaNbO3 (BNT-BA-xNN, x = 0, 0.04, 0.08, 0.12, and 0.16) ternary ceramics were designed to achieve excellent energy storage properties. It was found that the introduction of NaNbO3 (NN) effectively increase the difference (ΔP) between Pmax and Pr, resulting in an obvious enhancement of the energy storage properties. High recoverable energy storage density, responsivity, and power density, that is, Wrec = 2.01 J/cm3, ξ Wrec/E = 130.69 J/(kV⋅m2), and PD = 25.59 MW/cm3, accompanied with superior temperature stability were realized at x = 0.14 composition. In addition, the thermal stable dielectric properties of the sample can be prominently improved with increasing NN content. The temperature coefficient of capacitance (TCC) of x = 0.16 composition is lower than 15% over the temperature range from 49°C to 340°C, with a high dielectric permittivity of 1647 and a low dielectric loss (0.0107) at 150°C. All these features show that the BNT-BA-xNN ceramics are promising materials for energy storage application.  相似文献   

6.
Lead-free antiferroelectric (AFE) materials have seen a surge of research activity in environmentally friendly energy storage technologies. Recently, considerable work has been done to improve the stability of AFE in NaNbO3 (NN) ceramics, but it remains a grand challenge to obtain typical AFE characteristic double P-E loops in NN ceramics at ambient conditions. In a preliminary estimate of tolerance factor versus average electronegativity difference, we reported the stable AFE phase in 0.95NaNbO3-0.05BiMg2/3Ta1/3O3 sample. The orthorhombic Q to P phase transition was verified by XRD and TEM. Then, the remarkable double P-E loops were obtained in 0.95NaNbO3-0.05BiMg2/3Ta1/3O3 ceramics. Furthermore, a phenomenological model was proposed to explain the P-E relationships and our results. Compared with other reported compounds, the TP-R decreased more obviously from 350 °C to 200 °C. Superior temperature stability (variations of maximum current, current density, and power density within 15% over 30–140 °C) and field induced phase transition were also confirmed by the pulse charge testing. Our work develops a new road for achieving room-temperature double P-E loops in NN ceramics by BiM1M2O3 (M1 might be Mg, Zn, etc; M2 might be Nb, Ta, etc) additives.  相似文献   

7.
A new lead‐potassium‐free ceramic of (0.9‐x)NaNbO3‐0.1BaTiO3‐xNaSbO3 (NN‐BT‐xNS) was successfully prepared via a solid‐state reaction method. The microstructure, phase structure, dielectric, ferroelectric, and piezoelectric properties were investigated as a function of NS content. The substitution of NS for NN was found to dramatically change the grain morphology from cube‐like grains typical for alkaline niobate‐based ceramics to conventional sphere‐like grains especially for Pb‐based perovskite ceramics. A normal to relaxor ferroelectric phase transformation was accompanied by a tetragonal (T) to rhombohedral (R) phase transition. A composition‐temperature phase diagram demonstrated a vertical morphotropic phase boundary between T and R phases in the composition range of x=0.03‐0.04, where optimum electrical properties of d33=252 pC/N, kp=36%, Qm=168, =2063, and Tc=109°C were obtained in the x=0.035 ceramic sintered at 1260°C. Particularly, excellent temperature insensitivity of small‐signal piezoelectric properties suggested large application potentials in various actuators and sensors in comparison with other typical lead‐free materials.  相似文献   

8.
BaTi1-xCaxO3-x [BTC100x] ceramics were synthesized via solid-state reaction method. Effect of Ca substitution on the structure, electrical and dielectric properties of BTC100x ceramics was systematically investigated. Calcined BTC100x powders were in tetragonal phase when x?≤?0.01, whereas transformed to cubic at x?>?0.01. Additionally, the diffraction peak (200) shifted to lower angles with increasing x, indicating increased unit cell volume. Meanwhile, Ba0.97Ca0.03TiO3 [BC3T] ceramic was prepared and studied, to compare with BaTi0.97Ca0.03O2.97 (BTC3). It was found that pure BaTiO3 [BT] and BC3T ceramics had the similar structural and dielectric properties, whereas BTC3 ceramic showed much difference,XRD patterns, Raman spectrum, impedance spectra and dielectric-temperature spectra provided strong evidence of Ca2+ substitution at Ti site in BT lattice. Finally, BTC100x ceramics were produced and dielectric properties were investigated. With increasing x, the Curie temperature decreased from 128?°C (BT) to 42?°C (BTC5).  相似文献   

9.
0.94(Na0.5Bi0.5+x)TiO3–0.06BaTiO3 (x = ?0.04, 0, 0.02; named NB0.46T‐6BT, NB0.50T‐6BT, NB0.52T‐6BT, respectively) lead‐free piezoelectric ceramics were prepared via the solid‐state reaction method. Effects of Bi3+ nonstoichiometry on microstructure, dielectric, ferroelectric, and piezoelectric properties were studied. All ceramics show typical X‐ray diffraction peaks of ABO3 perovskite structure. The lattice parameters increase with the increase in the Bi3+ content. The electron probe microanalysis demonstrates that the excess Bi2O3 in the starting composition can compensate the Bi2O3 loss induced during sample processing. The size and shape of grains are closely related to the Bi3+ content. For the unpoled NB0.50T‐6BT and NB0.52T‐6BT, there are two dielectric anomalies in the dielectric constant–temperature curves. The unpoled NB0.46T‐6BT shows one dielectric anomaly accompanied by high dielectric constant and dielectric loss at low frequencies. After poling, a new dielectric anomaly appears around depolarization temperature (Td) for all ceramics and the Td values increase with the Bi3+ amount decreasing from excess to deficiency. The diffuse phase transition character was studied via the Curie–Weiss law and modified Curie–Weiss law. The activation energy values obtained via the impedance analysis are 0.69, 1.05, and 1.16 eV for NB0.46T‐6BT, NB0.50T‐6BT and NB0.52T‐6BT, respectively, implying the change in oxygen vacancy concentration in the ceramics. The piezoelectric constant, polarization, and coercive field of the ceramics change with the variation in the Bi3+ content. The Rayleigh analysis suggests that the change in electrical properties of the ceramics with the variation in the Bi3+ amount is related to the effect of oxygen vacancies.  相似文献   

10.
The BT/NZFO composite ceramics derived by sol–gel in situ process were successfully prepared. The phase composition, morphology, and microstructure of the composite ceramics were determined and observed by X‐ray diffractometer (XRD), SEM, and EDS. Results showed that the Ni–Zn ferrite (NZFO) phase started to grow initially and then the BaTiO3 (BTO) phase grew among the interfaces of NZFO particles at high ferrite content. The observation of microstructure showed that the NZFO phase in large grain size is enwrapped by the BTO phase in small grain size, and the constituent phases existed in the form of solid solutions doped with Fe and Ti, respectively. The densification and microstructure depended on the volume fraction of ferrite (fNZFO). The appropriate sintering temperature was 1280°C–1300°C at which stable phase structure could be obtained for the BTO/NZFO composite. The maximum permittivity could achieve 86 000, and the initial permeability was as high as 162 when the ceramics was loaded with 95% ferrite and sintered at 1300°C for 12 h. The BT/NZFO composite ceramics exhibited impressive dielectric and magnetic properties, making it a potential candidate for wide applications in the integration of electronic devices.  相似文献   

11.
Similar to the canonical antiferroelectric (AFE) compound PbZrO3 in Pb(Zr,Ti)O3 solid-solutions, the presence of double hysteresis loops and that of electric field–induced phase transitions are important characteristics of NaNbO3 AFE materials; yet the phase transition behavior in the latter system is typically irreversible with the related mechanisms not fully understood. Here, we explore the phase transition mechanism of ferroelectric and AFE phases in NaNbO3 based on measurements of single crystals with different directions in conjunction with density-functional theory (DFT) calculations. The tilting and distortion behaviors of the [NbO6] octahedra are explained by DFT, and the ion displacement in the lattice is traced. The tilting and distortion behaviors of the [NbO6] octahedra with different orientations are compared. We confirm that the tilt and distortion of the [NbO6] octahedra along the [1 1 1] direction is the main reason to improve the stability of AFE phase. This conclusion is verified by the experimental characterizations of large-size NaNbO3 single crystals successfully obtained in this study.  相似文献   

12.
In this work, we report a lead‐free piezoelectric ceramic of (0.9‐x)NaNbO3‐0.1BaTiO3xBaZrO3, and the effects of BaZrO3 on the phase structure, microstructure, electrical properties and temperature stability are investigated. A morphotropic phase boundary‐like region consisting of rhombohedral (R) and tetragonal (T) phases is constructed in the compositions with = 0.035‐0.04. More importantly, in situ temperature independence of the piezoelectric effect {piezoelectric constant (d33) and strain} can be achieved below the Curie temperature (Tc). Intriguingly, the electric field‐induced strain is still observed at ≥ Tc due to the combined actions of the electrostrictive effect and the electric field‐induced phase transition. We believe that NaNbO3‐based ceramics of this type have potential for applications in actuators and sensors.  相似文献   

13.
This work focused on the processing of low oxygen partial pressure (low‐pO2) calcination and sintering with respect to NaNbO3 (NN) of one key member in ferroelectric (Na,K)NbO3. The high‐density NN ceramics were successfully prepared without any sintering additives using the low‐pO2 process. Comparing conventional air process, the low‐pO2 calcined NN powders showed lower defect concentration and higher densification. The low‐pO2 sintered NN ceramics had dielectric constant and dielectric loss performance at high temperatures. Furthermore, the low‐pO2 sintered NN ceramics indicated ferroelectric behavior, and both maximum polarization and strain improved to two to three times that of conventional air‐sintered NN ceramics. From this relatively simple compound, NN, the advantage of low‐pO2 is unambiguously demonstrated and points to its consideration. It is hypotheses as a kinetically controlled process that limits the volatility under low‐pO2 condition.  相似文献   

14.
Lead-free antiferroelectric (AFE) ceramic materials have attached increasing attention in application of high-power capacitors for the past few years, due to their high energy storage density and environmental protection. However, the related applications are seriously restricted because of the limited number of environment friendly AFE candidate materials, high cost and low energy storage efficiency. In this work, the A-site ion Sm3+ doped 0.88NaNbO3-0.12Sr0·7Bi0·2TiO3 lead-free AFE P phase ceramics (0.88Na1-3xSmxNbO3-0.12Sr0·7Bi0·2TiO3, abbreviated as NN-SBT-100xSm) were prepared and characterized. With the increase of Sm doping amount, a relaxor-like behavior was found in the dielectric-temperature curves of NN-SBT-100xSm, indicating the AFE orthorhombic P phase is gradually replaced by an AFE orthorhombic R phase. As a result, double-like and slim P-E curve with near-zero residual polarization and suppressed hysteresis loss was obtained at x > 0.01. More encouragingly, a good discharge energy storage density (Wrec = 3.58 J/cm3) and a high efficiency (η = 82%) at a low electric field (E = 200 kV/cm) has been recorded simultaneously for NN-SBT-2Sm relaxor AFE ceramic, which are better than the other lead-free energy storage ceramics under the same E. In addition, the energy storage properties of NN-SBT-2Sm ceramics exhibit outstanding temperature and frequency stability. These results indicate that NN-SBT-2Sm relaxor AFE ceramic has a great practical value in pulse power capacitors.  相似文献   

15.
Perovskite solid solution ceramics of (1 ? x)BaTiO3xBi(Mg2/3Nb1/3)O3 (BT–BMN) (= 0.05–0.2) were synthesized by solid‐state reaction technique. The results show that the BMN addition could lower the sintering temperature of BT‐based ceramics. X‐ray diffraction results reveal a pure perovskite structure for all studied samples. Dielectric measurements exhibit a relaxor‐like characteristic for the BT–BMN ceramics, where broadened phase transition peaks change to a temperature‐stable permittivity plateau (from ?50°C to 300°C) with increasing the BMN content (= 0.2), and slim polarization–electric field hysteresis loops were observed in samples with ≥ 0.1. The dielectric breakdown strength and electrical resistivity of BT–BMN ceramics show their maxima of 287.7 kV/cm and 1.53 × 1013 Ω cm at = 0.15, and an energy density of about 1.13 J/cm3 is achieved in the sample of = 0.1.  相似文献   

16.
NaNbO3 (NN) is considered to be one of the most prospective lead-free antiferroelectric energy storage materials due to the merits of low cost, nontoxicity, and low density. Nevertheless, the electric field-induced ferroelectric phase remains dominant after the removal of the electric field, resulting in large residual polarization, which prevents NN ceramics from obtaining superior energy storage performance. In this work, the relaxor ferroelectric Sr0·7Bi0·2TiO3 (SBT) was chosen to partially replace the NN ceramics, and the introduction of the nanodomain of the relaxor ferroelectric hinders the generation of field-induced ferroelectric phases, allowing the material to combine the large polarization strength of the relaxor ferroelectric with the near-zero residual polarization of the antiferroelectric. Large recoverable energy storage density (4.5 J cm?3) and ultra-high energy storage efficiency (90.3%) were gained in NN-20SBT under an electric field of 288 kV cm?1. Furthermore, superior temperature (25–120 °C) and frequency (1–500 Hz) stabilities were acquired. These performances demonstrate that NN-20SBT ceramics are potential candidates as dielectric materials for high energy storage density pulsed power capacitors.  相似文献   

17.
采用溶胶–凝胶工艺制备了一种渗流型多铁性BaTiO3/Ni0.5Zn0.5Fe2O4(BT/NZF)复相陶瓷。研究了烧结温度和组成对BT/NZF复相陶瓷的致密化和显微结构形成过程的影响,并研究了复相陶瓷的组成与其性能的变化关系。结果表明:在1200~1300℃范围内不同温度热处理12h,0.1BT/0.9NZF(体积分数)复相陶瓷的介电常数达到14000~31000,远高于纯BT陶瓷的介电常数;磁导率达140,接近于纯NZF陶瓷的磁导率。提高烧结温度有利于陶瓷的密度和介电常数的进一步提高;增加铁氧体含量有利于获得铁氧体晶粒尺寸大和磁导率高的复相陶瓷。  相似文献   

18.
(1?x)BaTiO3xBiYO3 [(1?x)BT–xBY] polycrystalline ceramics were prepared by solid‐state reaction method. The ceramics are in tetragonal phase when x ≤ 0.04, transform to pseudocubic at x ≥ 0.06, showing a classic ferroelectric to relaxor transition at x = 0.06, where the phase transition temperature was found to shift to higher temperature with increasing frequency. The dielectric permittivity peaks were analyzed by the modified Curie–Weiss law. Both parameters ΔTdiffuse and ΔTrelaxor were found to increase with increasing BY content, demonstrating a stronger relaxor characteristic.  相似文献   

19.
Dielectric ceramics with both excellent energy storage and optical transmittance have attracted much attention in recent years. However, the transparent Pb-free energy-storage ceramics were rare reported. In this work, we prepared transparent relaxor ferroelectric ceramics (1 − x)Bi0.5Na0.5TiO3xNaNbO3 (BNT–xNN) by conventional solid-state reaction method. We find the NN-doping can enhance the polarization and breakdown strength of BNT by suppressing the grain growth and restrained the reduction of Ti4+ to Ti3+. As a result, a high recoverable energy-storage density of 5.14 J/cm3 and its energy efficiency of 79.65% are achieved in BNT–0.5NN ceramic at 286 kV/cm. Furthermore, NN-doping can promote the densification to improve the optical transmittance of BNT, rising from ∼26% (x = 0.2) to ∼32% (x = 0.5) in the visible light region. These characteristics demonstrate the potential application of BNT–xNN as transparent energy-storage dielectric ceramics.  相似文献   

20.
Barium titanate powder was prepared by soft chemical process from polymeric precursors (modified Pechini process). The synthesized barium titanate (BT) powder was nanosized and the factor of agglomeration (Fagg) pointed the existence of agglomerates. In order to de-agglomerate nanopowder and to enhance BT properties the attrition milling was performed. The milled powder (BTA) possessed smaller particles and the size and number of agglomerates was significantly reduced. To investigate the effect of milling on improvement of ceramics electrical properties, both BT and BTA powders were uniaxially pressed and sintered at 1300 °C for 8 h in air. The temperature dependence of relative permittivity showed three structural phase transitions for ferroelectric barium titanate ceramics. The dielectric constant at Curie temperature was ~6700 for BTA which is much higher than 1340, obtained for non-treated BT. The dielectric losses were below 0.04 in both BT ceramics. At higher temperatures the analysis of impedance measurements showed the presence of both grain interior and grain boundary effects. Much higher grain and grain boundary resistivities were obtained for the BTA ceramics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号