首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 60 毫秒
1.
The effects of different kinds of nucleating agents on crystallization, microstructure and performances of Magnesium Aluminosilicate (MgO-Al2O3-SiO2, MAS) glass-ceramics which were fabricated by melting method in this study. Also, this paper systematically investigated the mechanism of glass stability, crystallization kinetics and element distribution of MAS glass-ceramics. Herein, we used three kinds of nucleating agents, which was TiO2, ZrO2 and composite nucleating agent (TiO2/ZrO2). The results showed after the doping of nucleating agent, the content of α-cordierite was increased, the stability and crystallization kinetics of glass was changed, the precipitated crystal phase was finer and more compact. Wherein, the sample with composite nucleating agents (TiO2, ZrO2) has the best performance due to the highest contents of α - cordierite, uniform distribution of elements without agglomeration in the crystal phase and the most compact structure, whose Vickers hardness and bending strength can reach 9.70 GPa and 312 MPa, respectively.  相似文献   

2.
《Ceramics International》2022,48(9):12699-12711
The effect of variation of MgO (1.5, 4.5 and 7.5 mol%) content on glass structure, crystallization behavior, microstructure and mechanical properties in a Li2O–K2O–Na2O–CaO–MgO–ZrO2–Al2O3–P2O5–SiO2 glass system has been reported here. Increased amount of MgO enhanced the participation of Al2O3 as a glass network former along with [SiO4] tetrahedra, reducing the amount of non-bridging oxygen (NBO) and increasing bridging oxygen (BO) amount in glass. The increased BO in glass resulted in a polymerized glass structure which suppressed the crystallization and subsequently increased the crystallization temperature, bulk density, nano hardness, elastic modulus in the glasses as well as the corresponding glass-ceramics. MgO addition caused phase separation in higher MgO (7.5 mol%) containing glass system which resulted in larger crystals. The nano hardness (~10 GPa) and elastic modulus (~127 GPa) values were found to be on a much higher side in 7.5 mol% MgO containing glass-ceramics as compared to lower MgO containing glass-ceramics.  相似文献   

3.
《Ceramics International》2022,48(15):21638-21647
Municipal solid waste incineration (MSWI) fly ash (FA) is a typical hazardous waste due to its high contents of toxic heavy metals, and hence its disposal has attracted global concern. In this work, it was recycled into environmental-friendly CaO–Al2O3–SiO2 system glass-ceramics via adding coal fly ash (CFA) and waste glass (WG). The effects of CaO/SiO2 ratios and sintering temperatures on the crystalline phases, morphologies, mechanical and chemical properties, heavy metals leaching and potential ecological risks of glass-ceramics were investigated. The results showed that wollastonite (CaSiO3), anorthite (CaAl2Si2O8) and gehlenite (Ca2Al2SiO7) were the dominant crystals in the glass-ceramics, which were not affected by CaO/SiO2 ratio and sintering temperature. The compressive strength increased, while the Vickers hardness and microhardness decreased as increasing the sintering temperatures from 850 to 1050 °C, which reached their maximum values of 660.69 MPa, 6.14 GPa, and 7.43 GPa, respectively. However, the increase of CaO/SiO2 ratio resulted into the reduction of the three mechanical parameters. As varying CaO/SiO2 ratio from 0.48 to 0.86, the maximum compressive strength, Vickers hardness and microhardness were 611.80 MPa, 5.43 GPa, and 6.56 GPa, respectively. Besides, all the glass-ceramics exhibited high alkali resistance of >97%. The extremely low heavy metals leaching concentrations and low potential ecological risk of glass-ceramics further revealed its environmentally friendly property and potential application feasibility.  相似文献   

4.
Transparent MgAl2O4 ceramics were bonded by using CaO-Al2O3-SiO2 (CAS) glass filler. The CAS glass filler exhibited the same thermal expansion behavior as MgAl2O4 ceramic and excellent wetting ability on the surface of MgAl2O4 ceramic. When the cooling rate of 15 °C/min was used, no interfacial reaction was observed and the amorphous brazing seam could be obtained. However, low joining temperature (1250 °C) led to the formation of pores and high joining temperature (1400 °C) resulted in the formation of cracks. Furthermore, the slow cooling rate of 5–10 °C/min induced the crystallization of CaAl2Si2O8 and Mg2Al4Si5O18 due to the dissolution of MgAl2O4 substrate. The optimal flexural strength of 181–189 MPa was obtained when the joining temperature and cooling rate were 1300–1350 °C and 15 °C/min respectively. Moreover, the in-line transmittance of the joint at 1000 nm was 82.1%, which was slightly lower than that of MgAl2O4 ceramic (85.6%).  相似文献   

5.
《Ceramics International》2022,48(15):21355-21361
In this study, a transparent and environmentally friendly Li2O–Al2O3–SiO2 (LAS) glass-ceramic was prepared by melt-quenching and two-step heat treatment. The influence of the substitution amount of ZrO2 by SnO2 on the crystallization, microstructure, transparency, and mechanical properties of LAS glass and glass-ceramics was investigated by means of differential scanning calorimetry (DSC), X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), Ultraviolet–visible Spectrophotometer, three-point bending strength test, and microhardness test. The results indicate that the main crystalline phase of LAS glass ceramics was a β-quartz solid solution when heat treated at 780 °C for 2 h and 870 °C for 1.5 h. When the substitution amount of ZrO2–SnO2 increased from 0.4 mol% to 2.5 mol%, the grain size and thermal expansion coefficient of LAS glass-ceramics first decreased and then increased, and the crystallinity first increased and then decreased. When the substitution amount of ZrO2–SnO2 was 0.8 mol%, the transparency of the LAS glass-ceramics was maximum, the bending strength was 96 MPa, and the Vickers hardness was 10.9 GPa.  相似文献   

6.
《Ceramics International》2023,49(7):10652-10662
Transparent glass-ceramics containing eucryptite and nepheline crystalline phases were prepared from alkali (Li, Na) aluminosilicate glasses with various mole substitutions of Al2O3 for SiO2. The relationships between glass network structure and crystallization behavior of Li2O–Na2O–Al2O3–SiO2 (LNAS) glasses were investigated. It was found that the crystallization of the eucryptite and nepheline in LNAS glasses significantly depended on the concentration of Al2O3. LNAS glasses with the addition of Al2O3 from 16 to 18 mol% exhibited increasing Q4 (mAl) structural units confirmed by NMR and Raman spectroscopy, which promoted the formation of eucryptite and nepheline crystalline phases. With the Al2O3 content increasing to 19–20 mol%, the formation of highly disordered (Li, Na)3PO4 phase which can serve as nucleation sites was inhibited and the crystallization mechanism of glass became surface crystallization. Glass-ceramics containing 18 mol% Al2O3 showed high transparency ~84% at 550 nm. Moreover, the microhardness, elastic modulus and fracture toughness are 8.56 GPa, 95.7 GPa and 0.78 MPa m1/2 respectively. The transparent glass-ceramics with good mechanical properties show high potential in the applications of protective cover of displays.  相似文献   

7.
《Ceramics International》2022,48(14):20053-20061
The composition governs the crystallization ability, the type and content of crystal phases of glass-ceramics. Glass-ceramic joining materials have generated more research interest in recent years. Here, we prepared a novel Li2O–MgO–Al2O3–SiO2 glass-ceramic for the application of joining Si3N4 ceramics. We investigated the influence of the MgO/Al2O3 composition ratio on microstructure and crystallization behaviour. The crystallization kinetics demonstrated that the glasses had excellent crystallization ability and high crystallinity. β-LiAlSi2O6 and Mg2SiO4 were precipitated from the glass-ceramics, and the increase of MgO concentration was conducive to the precipitation of Mg2SiO4. Among the glass-ceramic samples, the thermal expansion coefficient of LMAS2 glass-ceramic was 3.1 × 10?6/°C, which was very close to that of Si3N4 ceramics. The wetting test showed that the final contact angle of the glass droplet on the Si3N4 ceramic surface was 32° and the interface was well bonded.  相似文献   

8.
《Ceramics International》2023,49(8):12499-12507
MgO–Al2O3–SiO2 glass-ceramics have been widely used in military, industrial, and construction applications. The nucleating agent is one of the most important factors in the production of glass-ceramics as it can control the crystallization temperature or the grain size. In this study, we investigated the effect of replacing P2O5 with different amounts of TiO2 on the crystallization, structure, and mechanical properties of an MgO–Al2O3–SiO2 system. The crystallization and microstructure were investigated by differential scanning calorimetry, Raman spectroscopy, X-ray diffraction, scanning electron microscopy, and transmission electron microscopy. The mechanical properties were investigated by measuring the Vickers hardness, Young's modulus, and fracture toughness. The results showed that adding TiO2 favored the precipitation of fine grains and significantly increased the Vickers hardness, Young's modulus, and fracture toughness of the glasses. Introducing an appropriate amount of TiO2 can make a glass structure more compact, promote crystallization, and improve the mechanical properties of MgO–Al2O3–SiO2 glass-ceramics.  相似文献   

9.
In this work, three different commercial lithium silicate (LS) glass-ceramics for computer aided design/computer aided machining systems, CeltraDuo-Dentsply (LS-C), E-MaxCAD-Ivoclar (LS-E), and Suprinity-Vita (LS-S), were comparatively characterized. Following the protocols recommended by the manufacturers, the glass-ceramics were heat-treated under low vacuum and characterized by X-ray diffraction, scanning electron microscopy, hardness, fracture toughness, Young's modulus, and flexural strength. Rietveld refinement indicated that the materials “as-received” present mostly amorphous phase and Li2SiO3 as secondary crystalline phase in LS-E and LS-S specimens, while LS-C specimens also present Li2Si2O5 and Li3PO4 as crystalline phases. All “as-received” glass-ceramics present hardness, fracture toughness, and Young's modulus of around 647-678 HV, 1.15-1.40 MPa.m1/2, and 82-92 GPa, respectively. After heat treatment, the LS-C and LS-S specimens presented decreasing of amorphous phase associated to Li2SiO3 and Li2Si2O5 grains with low aspect ratio, while LS-E indicates a reduction of amorphous phase and Li2Si2O5 elongated grains. Fracture toughness and Young's modulus increase about 10% due to the crystallization of residual amorphous phase for all materials. Moreover, crystallographic and microstructural characteristics are responsible for the higher flexural strength of LS-E (327 MPa), regarding LS-C and LS-S. However, the glass-ceramics LS-E present lower Weibull modulus (m = 5.4) comparatively to LS-C (m = 9) and LS-S (m = 6).  相似文献   

10.
Generally, highly crystalline transparent glass-ceramics possess excellent physical and chemical properties compared to organic and other inorganic optical materials. We have successfully prepared highly crystalline transparent glass-ceramics in the MgO-Al2O3-SiO2 system by "extreme-time" nucleation & "finite-time" crystallization processes using P2O5, ZrO2 and TiO2 as multiple nucleating agents. The results revealed that the crystallization of glass is controlled by a three-dimensional interfacial crystal growth process. These glass-ceramics mainly consisted of cordierite crystals with a residual glassy phase, and crystallinity increased with crystallization time, but light transmittance decreased with crystallization time due to enlarged grain sizes. EDS mapping revealed a uniform distribution of elements within the glass-ceramic. In the optimal preparation condition (825?°C/96?h?+?990?°C/3?h), these glass-ceramics exhibited a high crystallinity (87.3?vol. %), high transmittance (78%), and excellent mechanical properties. This work provides a roadmap for preparing highly crystalline transparent glass-ceramics for applications in optical engineering.  相似文献   

11.
To realize a high hardness in transparent MgAl2O4, the MgAl2O4/Al2O3 laminated composite was fabricated by a one-step spark-plasma-sintering (SPS) method. By sintering at a temperature of 1225 °C for 10 min and at a heating rate of ≤ 10 °C/min under a pressure of 300 MPa, the MgAl2O4/Al2O3 laminated composites can attain a high hardness with maintaining the wide band transparency. The in-line and IR transmission were ~50 % at the visible wavelength of 500 nm and >77 % at the wavelength of 4 μm, respectively. The Vickers hardness measured on the surface of the Al2O3 layer perpendicular to the MgAl2O4/Al2O3 stacking exhibited 29 GPa, which is higher than those of the monolithic Al2O3 (26.6 GPa) and MgAl2O4 (17.2 GPa). The wide band transparency and mechanical properties can be realized by simultaneously attaining smaller grain sizes and higher densities of both the MgAl2O4 and Al2O3 phases in the laminated composite by optimizing the SPS conditions.  相似文献   

12.
This study focused on the glass forming, crystallization, and physical properties of ZnO doped MgO-Al2O3-SiO2-B2O3 glass-ceramics. The results show that the glass forming ability enhances first with ZnO increasing from 0 to 0.5 mol%, and then weakens with further addition of ZnO which acted as network modifier. No nucleating agent was used and the crystallization of studied glasses is controlled by a surface crystallization mechanism. The predominant phase in glass-ceramics changed from α-cordierite to spinel/gahnite as ZnO gradually replaced MgO. The phase type did not change; however, the crystallinity and grain size in glass-ceramics increased when the glasses were treated from 1030 °C to 1100 °C. The introduction of ZnO can improve the thermal, mechanical, and dielectric properties of the glass-ceramics. The results reveal a rational mechanism of glass formation, crystal precipitation, and evolution between structure and performance in the xZnO-(20-x)MgO-20Al2O3-57SiO2-3B2O3 (0 ≤ x ≤ 20 mol%) system.  相似文献   

13.
《Ceramics International》2023,49(18):29459-29466
Glass-ceramics have demonstrated excellent dielectric properties in low-temperature co-fired ceramic (LTCC) technology used in 5G/6G wireless devices. This work studies the mechanical strengths and dielectric properties from microwave to millimeter-wave frequencies in the CaO–SiO2 glass-ceramics modified via the P2O5 as a nucleating agent. The β-wollastonite phase was identified as the primary structure with the preferred (202) orientation and parallel plate-like structure in the matrix as P2O5 content increases up to 3.5∼5.5 wt%. The P2O5 nucleating agent increases degree of long-range crystallization. Elevated mechanical flexural strength of approximately 170 MPa, hardness of ∼720 MPa, and outstanding high-frequency dielectric properties were obtained in the 3.5–5.5 wt% P2O5-added CaO–SiO2 glass-ceramics, due to the enhanced interatomic Si–O bonding in the network. The improved mechanical and dielectric characteristics of the P2O5–added CaO–SiO2 glass-ceramics make the crystallized wollastonite materials for the 5G/6G devices possible.  相似文献   

14.
Crystallization, microstructure and mechanical behavior of TiO2 doped barium fluorphlogopite glass-ceramics were systematically studied. TiO2 was used as a doper nucleant in the BaO·4MgO·Al2O3·6SiO2·2MgF2 glass system. Melting technique was adopted to prepare the glass samples which were analyzed by differential thermal analysis (DTA), X-ray diffraction, scanning electron microscopy, and micro hardness indenter. The DTA study demonstrated that the crystallization exotherm of fluorphlogopite mica appeared in the temperature window of 886-903°C. In this investigation, four glass samples were prepared using 2 (MA1), 4 (MA2), 6 (MA3), and 8 (MA4) wt% of TiO2. Glass transition (Tg) and peak crystallization (Tp) temperatures escalated with an increase in the TiO2 content from 2 (MA1) to 4 wt% (MA2). However, beyond this value, Tg and Tp decreased with a surge in TiO2 content from 6 (MA3) to 8 wt% (MA4). Nevertheless, with a gradual rise in the TiO2 content, the crystals of the glass-ceramics became enlarged and subsequently exhibited mechanical properties, such as hardness, fracture toughness, and machinability. Therefore, in solid oxide fuel cell applications, TiO2 is a promising nucleating agent to generate fluorphlogopite mica-based glass-ceramics.  相似文献   

15.
《Ceramics International》2022,48(13):18199-18211
This study was devoted to the understanding of the influence of MgAl2O4 ceramic properties on their ballistic performances. By modifying the processing parameters, ceramics with different microstructures were obtained. Among them, a transparent MgAl2O4 spinel with an in-line transmission between 77% and 83% in the visible range, an average grain size of 8.6 μm and good mechanical properties (11.3 GPa in Knoop hardness and 2.5 MPa√m in fracture toughness) was produced. A thorough characterisation of the ceramics was accomplished in order to establish a link between microstructure, mechanical properties and ballistic protective performances against an armour piercing projectile of calibre 7.62x51 mm. The ballistic evaluation demonstrated the advantage of using a spinel layer as the strike face to stop a threat, while reducing drastically the thickness and the areal density of the transparent multilayer, compared to a simple glass armour. MgAl2O4 spinel with fine grains presented a better combination of mechanical properties compared to coarser microstructures, hence a better potential to damage a projectile at the impact.  相似文献   

16.
《Ceramics International》2020,46(4):4322-4328
The objective of this study was to evaluate the effect of ZnO content on the physical, mechanical and chemical properties of CaO–Al2O3–SiO2 (CAS) glass-ceramics produced from Colombian wastes, such as fly ash, granulated blast furnace slag and glass cullet. The CaO/SiO2 molar ratio of the mixtures was held constant (0.36). ZnO was added to the mixtures in proportions of 4, 7 and 10 wt%. The glass-ceramics were produced by the controlled crystallization of a parent glass. The values of crystallization temperature (Tp) show a fall up to 7 wt% and then shoots up with 10 wt% concentration of ZnO, but in general, ZnO addition lowers the temperature required for the formation of crystalline phases. In general, anorthite (CaAl2Si2O8) is the main phase observed in all heat treated samples, in addition to albite (Na(AlSi3O8)) and labradorite (Na0.45 Ca0.55 Al1.55 Si2.45 O8). The crystalline phases hardystonite (Ca2ZnSi2O7) and willemite (Zn2SiO4) were also identified in the samples with 7 and 10 wt% ZnO. The densities of the glass-ceramics were between 2658 and 2848 kg/m3, and it was found that ZnO helps to increase the density of glass-ceramics. The elastic modulus was in the 100–105 GPa range, the fracture toughness was between 0.45 and 0.64 MPa m1/2, and the Vickers microhardness was between 632 and 653 MPa. With regards to the durability, the weight loss of the glass-ceramics immersed in alkaline solution (NaOH) did not exceed 1.5 wt% after immersion for 6 h at 80 °C. The results of this study confirm that the vitrification process is a favorable option to utilize these industrial wastes.  相似文献   

17.
The nepheline-based transparent glass-ceramics are promising candidates for cover glass applications in electronic displays owing to their superior mechanical properties (than glasses) and ability to be chemically strengthened. However, our poor understanding about the kinetic and thermodynamic drivers controlling their crystallization processes usually results in their opacification and development of large internal stresses. The present work focuses on the development of nepheline-based nanocrystalline transparent glass-ceramic designed in the Na2O–Al2O3–SiO2 ternary system nucleated with P2O5. The temporal evolution of the phosphate and nepheline nanocrystal formation has been followed using X-ray diffraction, scanning/transmission electron microscopy, and energy-dispersive spectroscopy. The incorporation of P2O5 in the glass structure leads to the phase separation resulting in the crystallization of nanocrystalline Na3PO4 as an intermediate phase; thus, acting as a nucleating site for volume crystallization of nepheline. The optimization of nucleation and growth profile in the designed composition results in the formation of a transparent glass-ceramic with high optical transmittance (91.5 ± 0.1%).  相似文献   

18.
To obtain an alkali-free glass substrate with enhanced properties for thin-film transistor–liquid crystal displays (TFT–LCDs) applications, we chose a base glass composed of 3B2O3-15Al2O3-58SiO2-22MgO-0.5SrO-1.5MgF2 (mol%) for nucleation–crystallization. The results show that when the nucleation–crystallization processes of the base glass are 810 °C/6 h + 880 °C/6–9 h, the prepared GC/6–GC/9 glass-ceramics exhibit enhanced properties because of the precipitation of nano-sized cordierite. The transmittances in the visible range of the GC/6–GC/9 glass-ceramics exceed 85%, the densities are 2.564–2.567 g/cm3, thermal expansion coefficients are 2.934–3.059 × 10-6/°C (25–300 °C), compressive strengths are 417–589 MPa, bending strengths are 141–259 MPa, Vickers hardnesses are 6.8–7.8 GPa, and strain points are approximately 735 °C. Considering these properties, the prepared GC/6–GC/9 glass-ceramics have good potential as candidate materials for alkali-free glass substrates. Additionally, these results demonstrate that it is feasible to improve the properties of alkali-free glass substrates by nucleation–crystallization.  相似文献   

19.
This study aims to investigate the influence of heat treatment temperatures on the mechanical properties and chemical solubility (CS) of lithium disilicate-fluorcanasite glass-ceramics and to develop new dental materials. The glasses and glass-ceramics were prepared using CaF2-SiO2-CaO-K2O-Na2O-Li2O-Al2O3-P2O5-based glass system using a conventional melt quenching method followed by a two-stage crystallization process. This two-stage method involves two heating temperature steps: first at a constant temperature (TS1) of 600°C and second step at varying temperatures (TS2) of 650, 700, 750, and 800°C. The crystallization behavior, phase formation, microstructure, translucency characteristic, density, hardness, fracture strength, and CS were investigated. It was found that the lithium disilicate crystal acted as the main crystalline phase, and the crystalline phase of fluorcanasite occurred at the heat treatment temperatures of 750 and 800°C. In addition, it was found that density, hardness, fracture strength, and CS increased while the translucency values decreased with increasing heat treatment temperatures. Furthermore, the CS increased dramatically when the fluorcanasite phases occurred in the glass-ceramic samples. The maximum density values, Vickers hardness, fracture toughness, and flexural strength are 2.56 g/cm3, 6.73 GPa, 3.38 MPa.m1/2, and 259 MPa, respectively. These results may offer a possibility to design a new material for dental applications based on lithium disilicate-fluorcanasite glass-ceramics.  相似文献   

20.
《Ceramics International》2022,48(15):21245-21257
The feasibility of preparing low-cost glass-ceramics from Zn-containing dust and secondary molten slag generated during the carbothermal reduction of copper slag was investigated. Analytical-grade agents, such as ZnO, Fe2O3, SiO2, CaO, and Al2O3, were used to simulate the dust and secondary slag. The effect of ZnO content on the crystallization behavior, structure, and mechanical properties of the glass-ceramics was investigated through X-ray diffraction analysis, scanning electron microscopy-energy dispersive spectrometry, differential scanning calorimetry, Fourier transform infrared spectroscopy, and Raman spectroscopy. The results showed that with increased ZnO content from 0 to 6 wt%, the crystallization activation energy of base glass increased from 386.05 to 425.89 kJ/mol. Meanwhile, the average value of the crystal growth index increased from 1.91 to 4.10, and the highest crystallization rate of the glass-ceramics increased from about 1.44 to 23.11 mm3/min. The increased ZnO in glass-ceramics promoted the precipitation of gehlenite, but inhibit the crystallization of anorthite. When the ZnO content was 6 wt%, the comprehensive properties of the glass-ceramics were better; the flexural strength, microhardness, volume density, water absorption rate, and open porosity were 58.67 MPa, 738.35 HV, 2.92 g/cm3, 0.44% and 1.27%, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号