首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Cost effective electrocatalysts in water splitting reaction are critically important for the practical application of hydrogen fuel. The surface of three-dimensional copper foam is successfully roughened via one-step sulfurization reaction, and cuprous sulfide is formed on copper foam accordingly, which is denoted as Cu2S@Cu. The as-prepared Cu2S@Cu electrocatalyst exhibits remarkable performance on oxygen evolution reaction in basic solution, with a low overpotential of 345 mV to achieve 20 mA cm−2. Cu2S@Cu also shows enhanced performance on hydrogen production, compared to the original copper foam. Furthermore, Cu2S@Cu can work as both cathode and anode in full water splitting, with superior activity to the noble metal-based electrocatalysts under large current densities. This study demonstrates that surface roughening technique on copper foam by sulfurization reaction can be valuable for developing novel copper-based electrocatalysts for water splitting.  相似文献   

2.
Cu2O/TiO2 nanoparticles were prepared by solvothermal method, which formed the heterostructure of Cu2O/TiO2. Due to the heterostructure, the H2 evolution rate under simulated solar irradiation was increasingly promoted. Meanwhile a certain amount of Cu particles which were confirmed by Transmission Electro Microscopy (TEM) and X-Ray Photoelectron Spectroscopy (XPS), formed on the surface of Cu2O/TiO2, and the photoactivity was accordingly further enhanced. The stabilized activity was maintained after many times irradiation. It is interesting that after a few hours irradiation the amount of Cu particles on the surface kept unchanged in the presence of Cu2O and TiO2. The Cu particles that formed during hydrogen generation reaction play a key role in the further enhancement of the hydrogen production activity. In this study, it is the first time to study the details on the formation of the stable ternary structure under simulated solar irradiation and their synergistic effect on the photoactivity of the water splitting.  相似文献   

3.
Combination of ZnO and Cu2O semiconductors is remarkable for efficient photovoltaic cells and enhanced photoelectrochemical (PEC) performance due to the high electronic energy band alignment of these materials and their controllable electronic structure at the interface. This study reports on a systematic analysis of the effects of Cu2O nanocube doping on the structural properties and PEC performance of ZnO films. ZnO samples doped with Cu2O were prepared by a practical electrochemical method. Characterization of the materials was performed by XRD, Raman, FTIR spectroscopy and electrochemical techniques. The XRD, Raman, FTIR spectroscopy analyses indicated a single phase of ZnO for the lower Cu2O deposition time, while a secondary phase of Cu2O evolved for the 5 min deposition time. This study showed that ZnO doped with Cu2O grown for 3 min had the best PEC performance. ZnO/Cu2O photoelectrodes are recommended as an attractive, competitive and alternative candidate for advanced PEC sensing and this may be for the extended field of water splitting into oxygen and hydrogen under sunlight.  相似文献   

4.
In this work, we report the synthesis of cuprous oxide (Cu2O) nanoparticles modified vertically oriented aligned titanium dioxide (TiO2) nanotube arrays through wet chemical treatment of TiO2 nanotubes and their multi-functional application as enhanced photo electrochemical and hydrogen generation. The synthesized samples were characterized by X-ray diffraction, SEM, TEM, and UV–Vis spectroscopy. The structural characterization revealed that the admixed Cu2O nanoparticles on the TiO2 surface did not alter its crystalline structure of vertically oriented aligned TiO2 nanotube. The photocatalytic performance and hydrogen generation of as synthesized Cu2O nanoparticles modified aligned TiO2 nanotube was found to highly depend on the Cu2O content. The optical characterizations reveal that the presence of Cu2O nanoparticles extends its absorption into the visible region which improves the photocurrent density in comparison to pristine aligned TiO2 nanotubes electrodes due to enhanced photoactivity and better charge separation. The optimum photocurrent density and hydrogen generation rate has been found to be 3.4 mA cm?2 and 127.5 μmole cm?2 h?1 in 1 M Na2SO4 electrolyte solution under 1.5 AM solar irradiance of white light with illumination intensity of 100 mW cm?2.  相似文献   

5.
The electrocatalytic performance of Polypyrrole-Copper oxide particles modified carbon paste electrode (Cu2O/PPy/CPE) for electrocatalytic oxidation of ethanol was reported for the first time in alkaline media. The composite Cu2O/PPy was prepared using a facile approach consisting on the deposition of Polypyrrole film on CPE using galvanostatic mode then followed by the deposition of Copper particles at a constant potential. Scanning electron spectroscopy (SEM), infrared spectroscopy (FTIR), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were employed to characterize the structural and electrochemical properties of the Cu2O/PPy/CPE and to explain the mechanism of electrooxidation of ethanol. The experimental parameters that influence the electrooxidation of ethanol were investigated and optimized. Our findings suggest that the electrodeposition of Copper particles on Polypyrrole film enhanced the catalytic activity towards the ethanol oxidation with a peak current density of 2.25 mA cm−2 at 0.8 V vs Ag/AgCl, which is 2.6 times higher than the peak current density obtained by PPy/CPE electrode. It important to note that the saturation limit reaches a value of 5 M. To summarize, the good catalytic activity, stability and easy preparation make the Cu2O/PPy composite as an excellent electrocatalyst for ethanol oxidation.  相似文献   

6.
In this work, we developed ternary metallic cobalt-cobalt nitride-dicobalt phosphide composite embedded in nitrogen and phosphorus co-doped carbon (Co/CoN/Co2P-NPC) as bifunctional catalysts for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). The as-prepared Co/CoN/Co2P-NPC is achieved by simultaneous annealing and phosphating of a Co–N rich metal-organic frameworks (MOFs) precursor. Compare with the phosphorus-free Co/CoN embedded nitrogen-doped carbon electrocatalyst (Co/CoN-NC), the as-prepared Co/CoN/Co2P-NPC display superior HER and OER low overpotential of 99 mV and 272 mV at current density of 10 mA cm−2. When Co/CoN/Co2P-NPC electrocatalyst is use as bifunctional catalysts in overall alkaline water splitting, it exhibit excellent behaviour with 10 mA cm−2 current at overall cell potential of 1.60 V. The excellent performance of Co/CoN/Co2P-NPC electrocatalyst is attributed to the phosphating process that could further enhance synergistic effect, create stronger electronic interactions, and form efficient dual heteroatom doping to optimize the interfacial adhesion within the electrocatalyst. This present work will create more opportunities for the development of new, promising and more active sites electrocatalysts for alkaline electrolysis.  相似文献   

7.
Self-standing and hybrid MoS2/Ni3S2 foam is fabricated as electrocatalyst for hydrogen evolution reaction (HER) in alkaline medium. The Ni3S2 foam with a unique surface morphology results from the sulfurization of Ni foam showing a truncated-hexagonal stacked sheets morphology. A simple dip coating of MoS2 on the sulfurized Ni foam results in the formation of self-standing and hybrid electrocatalyst. The electrocatalytic HER performance was evaluated using the standard three-electrode setup in the de-aerated 1 M KOH solution. The electrocatalyst shows an overpotential of 190 mV at ?10 mA/cm2 with a Tafel slope of 65.6 mV/dec. An increased surface roughness originated from the unique morphology enhances the HER performance of the electrocatalyst. A density functional approach shows that, the hybrid MoS2/Ni3S2 heterostructure synergistically favors the hydrogen adsorption-desorption steps. The hybrid electrocatalyst shows an excellent stability under the HER condition for 12 h without any performance degradation.  相似文献   

8.
a low-cost electrode with lawn-like NiS2 nanowire arrays on flexible carbon fiber paper was synthesized, for the first time, via sulfurization of Ni2(CO3)(OH)2 precursor. And the performance of this electrode as a bifunctional electrocatalyst toward both the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER) was evaluated. It shows that NiS2 NWs/CFP requires small overpotentials of 165 mV for HER and 246 mV for OER, respectively, to deliver the current density of 10 mA cm?2 in 1.0 M KOH. The corresponding symmetric two-electrode alkaline water electrolyzer only needs a cell voltage of 1.59 V to afford 10 mA cm?2 water-splitting current density.  相似文献   

9.
Herein, 3D graphene is synthesized from the cation exchange resin by a cheap and efficient strategy, and then hexagonal micro-coin Co(OH)2 particles are loaded by a simple double displacement reaction. Different analytical techniques confirm that the 3D graphene exhibit rose petal-like structure, which is decorated with Co(OH)2 hexagonal micro coin structure. The hexagonal micro-coin Co(OH)2 are the actual active sites for electrochemical reactions, while conductive graphene eases the transport of electrons which may further heighten their performance. The as-synthesized electrocatalysts are used to study different electrochemical measurement in an alkaline (1 M KOH) solution. The as-prepared Co(OH)2-3 dimensional graphene-0.5 delivered the overpotential value of −0.367 and 1.599 V (vs RHE) (10 mA cm−2), the calculated Tafel slope values were 96 and 110 mV dec−1 for hydrogen and oxygen evolution reactions correspondingly. Different concentrations of Co were used to study the effect of Co on electrochemical measurements. The data shows that Co(OH)2-3DG-0.5 exhibited better performance than the other as-prepared Co(OH)2 based electrocatalysts. The as-prepared electrocatalyst also shows low Rct and reasonable stability for hydrogen and oxygen evolution reaction.  相似文献   

10.
Cuprous oxide is one of the inexpensive options of highly efficient visible light-based photocathode for hydrogen generation in photoelectrochemical cells. Highly photoactive cuprous oxide (Cu2O) films are obtained by cathodic electrodeposition using lactate stabilized copper sulphate precursor exhibiting a photo-current density of ~1 mA/cm2 at ?0.1 V vs. RHE. Although Cu2O is a decent choice for photoelectrochemical applications, including hydrogen evolution reaction (HER), it faces serious issues related to photodegradation and instability. To address this issue, a comparative study of two types of thin films, Al (2%)-doped ZnO (AZO) and NiOx (usually, x > 2 at low T to x→1 at high T annealing) as photo-corrosion protective overlayers is made. The improved stability of the protected photoelectrodes is observed as noted from the photocurrent degradation of 3.5%, 0.16% and 0.03% in Cu2O (bare), Cu2O/AZO, and Cu2O/NiOx photocathodes, respectively. Furthermore, the electrochemical impedance spectroscopy reveals that electrode protected with NiOx exhibit faster charge transfer kinetics and minimum photocurrent degradation as compare to the Cu2O/AZO and Cu2O(bare) photoelectrodes, proving its potential in HER kinetics.  相似文献   

11.
Molybdenum carbide is regarded as a noble metal-free and highly efficient electrocatalyst for hydrogen evolution reaction (HER) owing to its appropriate intermediate binding energy and Pt-like d orbital structure. It's an advanced method doping Ni, Zn, N, P and other atoms to further enhance the electrocatalytic performance of Mo2C, but the content of general doping elements is uncontrollable and cannot be accurately measured. In this work, we employ a unilateral Tris-functionalized Anderson polyoxomolybdate [H3NiMo6O21{(CH2O)3CNH3}]3- as a precursor for the first time to prepare Mo2C nanoparticles. The POMs were mixed with chitosan (CS) in aqueous solution and carbonized at high temperature to abtain highly dispersed N, Ni-doped Mo2C nanoparticles. The final electrocatalyst shows enhanced HER performance and good electrochemical stability. This article offers a feasible preparation of doped catalytic materials and extends the application of polyoxometalates.  相似文献   

12.
Developing high-efficiency and earth-abundant electrocatalysts for electrochemical water splitting is of paramount importance for energy conversion. Although tremendous effort has been paid to transition metal (TM) material-based electrocatalysts, rational design and controllable synthesis of fine structures to fully utilize the latent potential of TM materials remain great challenges. We herein report a composition-tuning strategy to achieve rational structure control of quaternary Co–Ni–S–Se materials through a facile one-pot hydrothermal method, in which earth-abundant Ni is introduced into a CoSxSe2-x matrix to optimize the morphology and electronic structure of the quaternary electrocatalyst. Because of the introduction of Ni, this novel Co–Ni–S–Se quaternary system shows better catalytic activity for water splitting with Tafel slopes of 42.1 mV dec−1 for hydrogen evolution reaction (HER) and 65.5 mV dec−1 for oxygen evolution reaction (OER), respectively, compared with its precursor Co–S–Se ternary system. For stability, there is negligible fading after long-term electrochemical test. Our work not only provides a novel thinking to introduce nickel into Co–S–Se ternary system by a facile hydrothermal synthesis for electrochemical water splitting, but also this quaternary system realizes bifunctional catalysis and better electrochemical performance relative to the ternary counterpart.  相似文献   

13.
In this study, a simple and fast electrochemical method was employed to synthesis molybdenum diselenide thin film. The morphology, structure and chemical composition of the nanocomposites were investigated by field emission scanning electron microscopy, X-ray diffraction, energy dispersive X-ray spectroscopy, Raman spectroscopy and X-ray photoelectron spectroscopy. The progressive effects of transition metal ions including Ni, Cu, and Co were surveyed on the hydrogen evolution activity of MoSe2 thin films. Co/MoSe2 nanocomposite thin films has significant electrocatalytic activity as compared to other samples, In order to achieve higher performance, preparing Co/MoSe2/RGO nanocomposite thin film, two strategies including layer by layer electrodeposition and co-electrodeposition has been employed. The presence of reduced graphene oxide leading to the onset potential shifts to more positive values and increase the current density. Also, results showed that the Co/MoSe2/RGO nanocomposite prepared by co-electrodeposition exhibits the best electrochemical hydrogen evolution at onset potential of −0.18 with an overpotential of −0.45 V.  相似文献   

14.
The electrochemical hydrogen evolution reaction (HER) was one of new energy development strategies with clean, efficient and renewable characteristics, and electrocatalysts play a crucial role in HER technology. Herein, a composite material (CSO@0.5CNT) derived from the combination of nano cobalt antimony oxide (CSO) with carbon nanotubes (CNT) through hydrothermal reaction, in which the nanoparticles of CSO were closely compounded on the surface of CNT, could be a highly efficient electrocatalyst for HER in 1 M KOH. The binary composite electrocatalyst of CSO and CNT reduced the internal resistance, promoted the charge transfer, exhibited a large electrochemical active area, and obtained the lower overpotential, with 155 mV at 10 mA/cm2 current density. Moreover, such a CSO@0.5CNT electrocatalyst displayed a small Tafel slope of 86.5 mV dec?1, excellent catalytic activity and extraordinary long-term structural stability after 30 h and 3000 CV cycles. Furthermore, the electrocatalytic mechanism revealed by Density Functional Theory (DFT) calculation proved that, the decomposition of H2O molecules was the control step of the whole HER, and the superior electron transport ability of CNT was favorable to the improvement of electrocatalytic performance. Benefitting from accessible active sites on carbon nanotube (C atom) and CSO (Co atom), the composite electrocatalyst of CSO@0.5CNT displayed synergistic effect for electrocatalytic HER properties, and that was the main mechanism for significantly improving the electrocatalytic activities. Our work provides a novel strategy towards high-efficiency electrocatalysts for hydrogen evolution reaction.  相似文献   

15.
Iridium-based bimetallic alloy system with unique performance is of great interest for high-temperature corrosive environment as a barrier layer or for water splitting of hydrogen/oxygen evolution reactions as a highly efficient and stable electrocatalyst. In this work, iridium-cobalt (Ir–Co) thin films were galvanostatically electrodeposited on a copper (Cu) foam electrode as an electrocatalyst for water splitting in 1.0 M KOH alkaline medium. The effects of loading and solution temperature on hydrogen evolution performance of Ir–Co deposits were investigated. The results show that Ir–Co deposits were adhered to substrates, with porous structure and hollow topography. The concentrations of Ir in the deposits with the loadings of 4.6, 3.2 and 0.8 mg·cm?2 were 88, 88 and 75 wt%, respectively. Ir–Co deposit with the loading of 3.2 mg·cm?2 required an overpotential of 108 mV for hydrogen evolution reaction to reach a current density of 30 mA cm?2, having a low Tafel slope value of 36 mV·dec?1. The changes in the solution temperature and catalyst loading had a significant effect on hydrogen evolution performance of Ir–Co/Ir–Co–O electrocatalysts. With the increasing of catalyst loading, the electrocatalytic activity increased firstly and then decreased. As the solution temperature was increased from 20 to 40 °C, the electrocatalytic activity of Ir–Co–O electrocatalyst increased, and then decreased with the rising of temperature. The apparent thermal activation energy obtained from Arrhenius plot was ~13.9 kJ mol?1. Ir–Co/Ir–Co–O deposits exhibited relatively good electrocatalytic stability and durability. The present work demonstrates a possible pathway to develop a highly active and durable substitute for thin film electrocatalysts for water splitting of hydrogen evolution reaction.  相似文献   

16.
Highly efficient and durable non-noble metal-based hydrogen evolution electrocatalysts are critical to advance the production of hydrogen energy via alkaline water electrolysis. Herein, we prepared a novel TiO2@WS2 hybrid via a facile and scalable two-step hydrothermal strategy combined with selective etching. Benefited from acid-etched TiO2 nanobelts with rough surface as substrate, ultrathin WS2 nanosheets nucleated and vertically grew into few layers in the confined configuration with more exposed active edges. Furthermore, the partial incorporation of oxygen in WS2 inherited from the remaining O–W bonds of tungsten precursor enhanced the electrical conductivity of the hybrid. Therefore, TiO2@WS2 hybrid was proved to be efficient and durable electrocatalyst for hydrogen evolution in alkaline medium. Upon optimal conditions, the hybrid only required a small onset overpotential of 95 mV and a low overpotential of 142 mV at 10 mA cm−2, superior to pristine WS2 and TiO2. In addition, better cycling stability during the alkaline HER process was also obtained, indicating its capability in future practical application. The synthesis strategy presents a cost-effective approach to produce efficient WS2-based HER electrocatalyst for electrochemical water splitting.  相似文献   

17.
Electrolysis of seawater gets an attention to produce hydrogen for renewable energy technology. It significantly reduces the use of fresh water instead of seawater. Development of low temperature fabrication of electrocatalyst can explore seawater splitting by avoiding chloride reduction during the hydrogen production. In the present work, we fabricated low temperature hydrothermal growth of Cu2S electrocatalyst on Ni foam at constant temperature of 80 °C at different growth times of 1–3 h. The prepared Cu2S electrocatalyst grown for 1 h exhibited low overpotentials of 76 and 118 mV at 10 mA/cm2 (289 and 358 mV overpotentials at 100 mA/cm2) in 1 M KOH deionized water and seawater, respectively for hydrogen evolution reaction (HER). The Tafel plot of Cu2S catalyst grown for 1 h showed lesser Tafel slope value of 128 mVdec?1 than that of other growth times 2 h (136 mVdec?1) and 3 h (142 mV dec?1) indicating elevated electrocatalytic behaviour of Cu2S grown for 1 h. Electrochemical impedance spectroscopy (EIS) showed charge transfer resistance of 12.8Ω, 19.6 Ω and 25.7Ω, for Cu2S grown for 1, 2 and 3 h, respectively, this lower charge transfer resistance indicated higher charge transfer properties. The Cu2S electrocatalyst grown for 1 h sustained retention of 80% after 12 h continuous stability test. Therefore, the cost-effective and low temperature fabrication of Cu2S electrocatalyst proceeds for development of largescale seawater splitting for hydrogen production.  相似文献   

18.
Cu2O loaded reduced graphene oxide (Cu2O/RGO) was prepared via a one-step in-situ reduction method. Composition and structure of the Cu2O/RGO were characterized by X-ray diffraction, high resolution transmission electron microscope and X-ray photoelectron spectroscopy. With eosin Y (EY) and rose bengal (RB) as co-sensitizers, the activity of hydrogen evolution over the Cu2O/RGO dramatically increased and achieved a maximum when the loading amount of Cu on the RGO was about 3 wt.%. It exceeded that of RGO and Cu2O by a factor of 7.3 and 4.2 at the same conditions, respectively. It could be even comparable to that of the Pt/RGO under the same reaction conditions. This work showed a possibility of utilizing Cu2O as an alternative for noble metals (such as Pt) due to its low cost and high performance in photocatalytic hydrogen production.  相似文献   

19.
The high energy demand for electrochemical water splitting arises from sluggish oxygen evolution reaction (OER) kinetics. In this regard, Layered double hydroxide (LDH) has been introduced as an outstanding catalyst for the OER due to its exceptional physiochemical and 2D infrastructure properties. Herein, we report the design and synthesiss of core-shell nanostructured electrocatalyst by rationally decorating vertically oriented NiFe LDH ultrathin nanosheets on CuxO support (NiFe LDH@CuxO) via microwave-assisted hydrothermal reaction. For OER, the NiFe LDH@CuxO core-shell nanostructured catalyst demonstrated promising electrocatalytic performance, requiring only 1.43 V onset potential and 270 mV overpotential at 10 mA cm?2. The NiFe LDH@CuxO also outperformed pristine NiFe LDH and iridium oxide (IrO2) in terms of electrocatalytic activity, durability, and Faradaic efficiency. The fabricated NiFe-LDH@CuxO electrocatalyst with outer shell NiFe-LDH ultrathin nanosheets provides numerous exposed active sites, benefits electrolyte diffusion and oxygen gas releasing and also reduces the interfacial charge transfer resistance to enhance OER activity. Furthermore, exclusive core-shell 3D infra-structure effectively prevents NiFe-LDH nanosheets agglomeration and restacking, enhancing electrochemical stability.  相似文献   

20.
A promising electrocatalyst containing variable percentage of V2O5–TiO2 mixed oxide in graphene oxide support was prepared by embedding the catalyst on Cu substrate through facile electroless Ni–Co–P plating for hydrogen evolution reaction. The solvothermal decomposition method was opted for tuning the crystalline characteristics of prepared material. The optimized mixed oxide was well characterized, active sites centres were identified and explained by X-ray diffraction, high resolution tunnelling electron microscopy, scanning electron microscopy coupled with energy dispersive X-ray and X-ray photon spectroscopy analysis. The structural and electronic characteristics of material was done by fourier transform infrared spectroscopy and the electrochemical behaviour of the prepared material was evaluated by using Tafel plot, electrochemical impedance analysis, linear sweep voltammetry, open circuit analysis and chronoamperometry measurements. The results show the enhanced catalytic activity of Ni–Co–P than pure Ni–P plate, due to synergic effect. Moreover, the prepared mixed oxide incorporated Ni–Co–P plate has a high activity towards HER with low over potential of 101 mV, low Tafel slope of 36 mVdec?1, high exchange current density of 9.90 × 10?2 Acm?2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号