首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Zirconium particles with irregular morphology and broad size distribution were uniformly coated by spherical α-Fe2O3 crystal grain via a facile route without polymer or surfactant as directing agents. The synthesized α-Fe2O3/Zr composite particles were characterized by X-ray diffraction, scanning electron microscopy, energy dispersion X-ray, UV-vis spectroscopy and Raman spectroscopy. The synthesis mechanism could be explained by cooperated heterogeneous nucleation and solid state transformation reaction. The combustion properties of α-Fe2O3/Zr composite particles were investigated. Compared with Zr particles, the combustion lasting time decreased from 16 s of Zr particles to 0.13 s of α-Fe2O3/Zr composite particles, and the top point of temperature reached in combustion increased from 2004 °C of Zr particles to 2378 °C of α-Fe2O3/Zr particles.  相似文献   

2.
Lanthanum acetylacetonate La(C5H7O2)3·xH2O has been used in the preparation of the precursor solution for the deposition of polycrystalline La2O3 thin films on Si(1 1 1) single crystalline substrates. The precursor chemistry of the as-prepared coating solution, precursor powder and precursor single crystal have been investigated by Fourier Transformed Infrared Spectroscopy (FTIR), differential thermal analysis coupled with quadrupole mass spectrometry (TG-DTA-QMS) and X-ray diffraction. The FTIR and X-ray diffraction analyses have revealed the complex nature of the coating solution due to the formation of a lanthanum propionate complex. The La2O3 thin films deposited by spin coating on Si(1 1 1) substrate exhibit good morphological and structural properties. The films heat treated at 800 °C crystallize in a hexagonal phase with the lattice parameters a = 3,89 Å and c = 6.33 Å, while at 900 °C the films contain both the hexagonal and cubic La2O3 phase.  相似文献   

3.
Thin ferroelectric films of PLTx (Pb1−xLaxTi1−x/4O3) have been prepared by a sol-gel spin coating process. As deposited films were thermally treated for crystallization and formation of perovskite structure. Characterization of these films by X-ray diffraction (XRD) have been carried out for various concentrations of La (x = 0.04, 0.08 and 0.12) on ITO coated corning glass substrates. For a better understanding of the crystallization mechanism, the investigations were carried out on films annealed at temperatures (350, 450, 550 and 650 °C). Characterization of these films by X-ray diffraction shows that the films annealed at 650 °C exhibit tetragonal phase with perovskite structure. Atomic force microscope (AFM) images are characterized by slight surface roughness with a uniform crack free, densely packed structure. Fourier transform infrared spectra (FTIR) studies of PLTx thin films (x = 0.08) deposited on Si substrates have been carried out to get more information about the phase stabilization.  相似文献   

4.
A procedure to grow α-MoO3 nanocrystals of rod and belt forms under mild conditions involved deposition onto a glass substrate via vapor transport with a water-soluble precursor. Scanning electron and transmission electron microscopic studies, selected-area electron diffraction and powder X-ray analyses indicate that these α-MoO3 nanocrystals exhibit rod or belt forms that grow along [0 0 1] and became vertically aligned on the glass substrate. Such deposition is effective to form thin films of controllable size and density of coverage on varying the precursor concentration and the duration of deposition.  相似文献   

5.
Nanocrystalline α-Fe2O3 has been prepared on a large-scale by a facile microwave-assisted hydrothermal route from a solution of Fe(NO3)3·9H2O and pentaerythritol. A systematic study of the morphology, crystallinity and oxidation state of Fe using different characterization techniques, such as transmission electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy was performed. It reveals that nanostructured α-Fe2O3 comprises bundles of nanorods with a rhombohedral crystalline structure. The individual nanorod has 8-10 nm diameter and ∼50 nm length. The as-prepared nanostructured α-Fe2O3 (sensor) gives selective response towards humidity. The sensor shows high sensitivity, fast linear response to change in the humidity with almost 100% reproducibility. The sensor works at room temperature and rejuvenates without heat treatment. The as-prepared nanostructured α-Fe2O3 appears to be a promising humidity sensing material with the potential for commercialization.  相似文献   

6.
In this work, X-ray diffraction, Raman spectroscopy and differential scanning calorimetry techniques were used to understand the crystallization process on 20Li2O-80TeO2 glass. X-ray diffraction results reveal the presence of three distinct alpha γ-TeO2, α-TeO2 and α-Li2Te2O5 crystalline phases in the glass matrix. The Raman spectroscopy band structure of this glass is similar to the one observed in glassy TeO2. Raman results clearly reveal the metastable character of the γ-TeO2 phase in the 20Li2O-80TeO2 glass, whose associated vibration modes disappear completely at temperatures higher than 315 °C. On the other hand, the Raman modes associated to α-TeO2 and α-Li2Te2O5 phases persists up to temperatures close to the final stages of the crystallization in the studied glass (around 420 °C). From DSC measurements, the activation energies 296 ± 3 and 298 ± 1 kJ mol−1 were associated to γ-TeO2 and α-TeO2 phases crystallization, indicating that these phases crystallizes at temperatures very close in the studied glass.  相似文献   

7.
The structure evolution of Pb(Zr0.5Ti0.5)O3 thin films with different thicknesses on the Pt(1 1 1)/Ti/SiO2/Si substrates has been investigated using X-ray diffraction and Raman scattering. Differing from Pb(Zr0.5Ti0.5)O3 bulk ceramic with a tetragonal phase, our results indicate that for PZT thin films with the same composition monoclinic phase with Cm space group coexisting with tetragonal phase can appear. It is suggested that tensile stress plays a role in shifting the morphotropic phase boundary to titanium-rich region in PZT thin films. The deteriorated ferroelectric properties of PZT thin films can be attributed mainly to the presence of thin non-ferroelectric layer and large tensile stress.  相似文献   

8.
Iron selenide (FeSe) thin films were electrodeposited onto indium doped tin oxide coated conducting glass (ITO) substrates at various bath temperatures from 30 °C to 90 °C in an aqueous electrolytic bath containing FeSO4 and SeO2. The deposition mechanism was investigated using cyclic voltammetry. The appropriate potential region where the formation of stoichiometric iron selenide thin films' occurs was found to be −1100 mV versus SCE. X-ray diffraction studies revealed that the deposited films are found to be hexagonal structure with a preferential orientation along (002) plane. The parameters such as crystallite size, strain, dislocation density are calculated from X-ray diffraction studies. Optical absorption measurements were used to estimate the band gap value of iron selenide thin films deposited at various bath temperatures. Scanning electron microscopy (SEM) was used to study the surface morphology. The composition of FeSe thin films was analyzed using an energy dispersive analysis by X-rays (EDX) set up attached with scanning electron microscopy. Preliminary studies for photoelectrochemical solar cells based on iron selenide thin films were carried out and the experimental observations are discussed.  相似文献   

9.
Deposition of thin films of iron oxide on glass has been carried out using a novel precursor, tris(t-butyl-3-oxo-butanoato)iron(III), in a low-pressure metalorganic chemical vapor deposition (MOCVD) system. The new precursor was characterized for its thermal properties by thermogravimetry and differential thermal analysis. The films were characterized by X-ray diffraction (XRD), transmission electron microscopy, scanning electron microscopy, and by optical measurements. XRD studies reveal that films grown at substrate temperatures below ∼550 °C and at low oxygen flow rates comprise only the phase Fe3O4 (magnetite). At higher temperatures and at higher oxygen flow rates, an increasing proportion of α-Fe2O3 is formed along with Fe3O4. Films of magnetite grown under different reactive ambients—oxygen and nitrous oxide—have very different morphologies, as revealed by scanning electron microscopic studies.  相似文献   

10.
xFe2O3·(100 − x)[Bi2O3·CdO] system with 0 ≤ x ≤ 50 mol% was prepared and investigated by X-ray diffraction, density, FT-IR and Raman spectroscopies. The XRD patterns confirm the formation of a vitreous structure for x < 35 mol% Fe2O3. The evolution of density and molar volume with the addition and increasing of iron content indicates structural changes in the structure of Bi2O3·CdO glass matrix. The FT-IR spectrum of the glass matrix reveals a structure realized from BiO3 pyramidal and BiO6 octahedral units. With the addition of iron the structure proposed by the glass matrix is changing by the appearance of FeO4 units. Also the existence of FeO6 units cannot be excluded. The Raman spectra suggest a structure build from BiO6 octahedral units. By Raman scattering the presence of structural units characteristic to Fe2O3 was not directly observed but the evolution of the spectra is dependent of the iron content.  相似文献   

11.
Electrochemically deposited α-Fe2O3 thin films, whose composition was tuned by Pt doping, were investigated as photoanode for photoelectrochemical water splitting. Morphological and structural characteristics of the nanostructured α-Fe2O3 thin films were studied by scanning electron microscopy and X-ray diffraction techniques. The films were characterized by Raman spectroscopy and X-ray photoelectron spectroscopy to determine the effect of Pt doping on the α-Fe2O3 structure. The photoelectrochemical performance of the films was examined by linear sweep voltammetry and electrochemical impedance spectroscopy. Results of these studies showed that Pt doping increased the density of small-sized nanoparticles in α-Fe2O3 thin films. The Pt doped films exhibited higher photoelectrochemical activity by a factor of 1.4 over un-doped α-Fe2O3 films. The highest photocurrent density of 0.56 mA cm−2 was registered for 3% pt doped film at 0.4 V versus Ag/AgCl in 1 M NaOH electrolyte and under standard illumination conditions (AM 1.5 G, 100 mW cm−2). This high photoactivity can be attributed to the high active surface area and increased donor density caused by Pt doping in the film. Electrochemical impedance analysis also revealed significantly low charge transfer resistance of Pt doped films, indicating its superior electrocatalytic activity for water splitting reaction compared to un-doped α-Fe2O3 thin films.  相似文献   

12.
We report a simple molten salt method to prepare nanosize α-Fe2O3, as well as its electrochemical performance as anode material for lithium ion batteries. The structure and morphology were confirmed by Raman spectroscopy, X-ray diffraction, and transmission electron microscopy. The as-prepared α-Fe2O3 is a rhombohedral phase of hematite with crystal size in the range of 20-40 nm. The electrochemical measurements were performed using the as-prepared powders as the active material for a lithium-ion cell. The nanosized α-Fe2O3 shows excellent cycling performance and rate capability. It also exhibits the feature of capacity increase upon cycling. The outstanding electrochemical performance of the α-Fe2O3 can be related to several factors, namely, the short Li+ diffusion length along the porous rhombohedral structures and the nanosized nature of the materials, which decreases the traverse time for electrons and Li+ ions, and reduces the volume expansion to some extent during charge/discharge reactions.  相似文献   

13.
Semiconducting As2Se3 thin films have been prepared from an aqueous bath at room temperature onto stainless steel and fluorine-doped tin oxide (F.T.O.)-coated glass substrates using an electrodeposition technique. It has been found that As2O3 and SeO2 in the volumetric proportion as 4:6 and their equimolar solutions of 0.075 M concentration forms good quality films of As2Se3. The films are annealed in a nitrogen atmosphere at temperature of 200 °C for 2 h. The films are characterised by scanning electron microscopy, X-ray diffraction and optical absorption techniques. Studies reveal that asdeposited and annealed thin films are polycrystalline in nature. The optical band gap has been found to be 2.15 eV for the above-mentioned composition and concentration of the film.  相似文献   

14.
Boron nitride thin films were grown on α-Al2O3 (0 0 1) substrates by reactive magnetron sputtering. Infrared attenuated total reflection (ATR) spectra of the films gave an intense signal associated with in-plane B-N stretching TO mode of short range ordered structure of BN hexagonal sheets. X-ray diffraction for the film prepared at a low working pressure (ca. 1 × 10−3 Torr) gave a diffraction peak at slightly lower angle than that corresponding to crystal plane h-BN (0 0 2). It is notable that crystal thickness calculated from X-ray peak linewidth (45 nm) was close to film thickness (53 nm), revealing well developed sheet stacking along the direction perpendicular to the substrate surface. When the substrates of MgO (0 0 1) and Si (0 0 1) were used, the short-range ordered structure of h-BN sheet was formed but the films gave no X-ray diffraction. The film showed optical band gap of 5.9 eV, being close to that for bulk crystalline h-BN.  相似文献   

15.
Fe-O thin films with different atomic ratio of iron to oxygen were deposited on glass and thermally oxidized silicon substrates at temperatures of 300, 473 and 593 K, by reactive magnetron sputtering in Ar+O2 atmosphere. The composition and structure of the thin films were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and electrical resistivity. It was found from XRD that with increasing the oxygen partial pressure in the working gas, the crystalline structure of the Fe-O films deposited at the substrate temperature of 473 K gradually changed from α-Fe, amorphous Fe-O, Fe3O4, γ-Fe2O3 to Fe21.34O32. The structure and chemical valence of the Fe3O4 films were analyzed by electron microscopy and XPS, respectively.  相似文献   

16.
A possible route for the synthesis of Fe3O4, Fe, and Fe/Fe3O4 bi-layers with chemical vapor deposition by employing the same Fe3(CO)12 carbonyl precursor is presented. The comprehensive structural, chemical, and morphological investigation of the as-deposited thin single films and bi-layers is performed by X-ray diffraction, X-ray reflectivity, Raman spectroscopy, and time-of-flight secondary ion mass spectrometry depth profiling. We present the possibility of performing the deposition of pure metallic Fe and Fe3O4/γ-Fe2O3 by adjusting the deposition pressure from 10- 3/- 4 Pa to 1 Pa, respectively. The integration of Fe3O4 thin films in a magnetic tunnel junction stack fully synthesized by in situ atomic layer and chemical vapor deposition processes is also presented, showing good stack stability and marginal interdiffusion.  相似文献   

17.
Indium oxide and indium-cobalt oxide thin films have been successfully prepared by direct UV irradiation of amorphous films of β-diketonate complexes on Si(1 0 0) substrates. Deposited films were characterized by X-ray diffraction, Auger electron spectroscopy and X-ray photoelectron spectroscopy. The surface morphology of the films, examined by atomic force microscopy and scanning electron microscopy, revealed that mixed indium-cobalt oxide films are much smoother than In2O3 films, with rms surface roughness of 7.24 and 26.1 nm, respectively.  相似文献   

18.
A mild solvothermal route has been developed to synthesize α-Fe2O3 nanoparticles using Fe(NO3)3 as a starting material. The results from XRD and TEM indicate the α-Fe2O3 powders possess a rhombohedrally centered hexagonal structure, and the size of particles from alcohothermal method at 160 °C is about 50-100 nm.  相似文献   

19.
Transparent nanostructured 12CaO·7Al2O3 thin films with cubic structure have been prepared on soda lime glass substrates via the sol-gel dip coating using the precursor sol solution at low temperature. The structural, compositional, morphological and optical properties of the 12CaO·7Al2O3 films and powder were studied using X-ray diffractometry (XRD), X-ray photoelectron spectroscopy, scanning electron microscopy (SEM) and atomic force microscopy. Optical properties of 12CaO·7Al2O3 films have been investigated using UV-visible spectroscopy. Two different precursor sols were prepared using calcium-2-ethyl hexonate and aluminium isopropoxide as precursor materials in isopropanol and ethylene glycol monomethyl ether solvents. Dip coated gel like films were dried at 120 °C for 15 min and subsequently heat-treated at 450 °C for 1 h in air atmosphere. The influence of films thickness and optical transparency with use of different solvent and sol concentration on microstructure of the films were established. In addition, XRD patterns revealed that 12CaO·7Al2O3 films have been composed of cubic phase. SEM observations exhibited that the films structure becomes more homogeneous using isopropanol as compared to ethylene glycol monomethyl ether solvent. The 12CaO·7Al2O3 films prepared using 2 (wt.%) sol in isopropanol had high transparency nearly 88% in wide visible range with maximum of 90% at 600 nm wavelength.  相似文献   

20.
Spindle porous iron nanoparticles were firstly synthesized by reducing the pre-synthesized hematite (α-Fe2O3) spindle particles with hydrogen gas. The products were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), nitrogen adsorption/desorption isotherms and vibrating sample magnetometry (VSM). A lattice shrinkage mechanism was employed to explain the formation process of the porous structure, and the adsorbed phosphate was proposed as a protective shell in the reduction process. N2 adsorption/desorption result showed a Brunauer-Emmett-Teller (BET) surface area of 29.7 m2/g and a continuous pore size distribution from 2 nm to 100 nm. The magnetic hysteresis loop of the synthesized iron particles showed a saturation magnetization of 84.65 emu/g and a coercivity of 442.36 Oe at room temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号