首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 697 毫秒
1.
We measured the critical heat flux (CHF) and boiling heat transfer coefficient (BHTC) of water-based Al2O3 (alumina) nanofluids. To elucidate the stabilizer effect on CHF and BHTC of alumina/water nanofluids, a polyvinyl alcohol (PVA) was used as a stabilizer. The plate copper heater (10 × 10 mm2) is used as the boiling surface and the concentration of alumina nanoparticle varies 0–0.1 vol.%. The results show that the BHTC of the nanofluids becomes lower than that of the base fluid as the concentration of nanoparticles increases while CHF of it becomes higher. It is found that the increase of CHF is directly proportional to the effective boiling surface area and the reduction of BHTC is mainly attributed to the blocking of the active nucleation cavity and the increase of the conduction resistance by the nanoparticle deposition on the boiling surface.  相似文献   

2.
TiO2 nanoparticle-coated nickel wires were produced by electrical heating in various nanofluid concentrations ranging from 0.01 to 1 wt.% with various processing heat fluxes from 0 to 1000 kW/m2. The experimental results demonstrated up to 82.7% enhancement on critical heat flux (CHF) in condition of coated nickel wire (processed in 1 wt.% with 1000 kW/m2) boiling in pure water. The contact angle measurement revealed that the hydrophilic porous coating formed by vigorous vaporization of TiO2 nanofluid in nucleate boiling regime enormously modified the wettability of heating surface consequently improving the CHF. Besides, it is evident that the coverage of nanoparticle deposition tended to become more complete as concentration and processing heat flux increased based on SEM and EDS analysis. The nanoparticles dispersed in base fluid exhibited little effect on CHF enhancement and could even hinder the percentage of CHF augmentation from boosting, which demonstrated that one could enhance CHF by using only small amount of nanoparticles just adequate to form surface coatings instead of preparing working fluid with great bulk. However, according to the boiling curves in all cases of coated nickel wires, it is supposed that the nucleate boiling heat transfer coefficient deteriorates as a result of thermal resistance resulted from the occurrence of nanoparticle deposition. In summary, the coated porous structure of nanoparticles leads to enhance CHF and to decrease boiling heat transfer coefficient.  相似文献   

3.
This paper deals with a study of enhanced critical heat flux (CHF) and burnout heat flux (BHF) in pool boiling of water with suspended silica nanoparticles using Nichrome wires and ribbons. Previously the current authors and other researchers have reported three-digit percentage increase in critical heat flux in silica nanofluids. This study investigates the effect of various heater surface dimensions, cross-sectional shapes as well as surface modifications on pool boiling heat transfer characteristics of water and water-based nanofluids. Our data suggest that the CHF and BHF decrease as heater surface area increases. For concentrations from 0.1 vol% to 2 vol%, the deposition of the particles on the wire allows high heat transfer through inter-agglomerate pores, resulting in a nearly 3-fold increase in burnout heat flux at very low concentrations. The nanoparticle deposition plays a major role through variation in porosity. The CHF enhancement is non-monotonic with respect to concentration. As the concentration is increased, the CHF and BHF decrease prior to increasing again at higher concentrations. Results show a maximum of 270% CHF enhancement for ribbon-type heaters. The surface morphology of the heater was investigated using SEM and EDS analyses, and it was inferred that the 2 vol% concentration deposition coating had higher porosity and rate of deposition compared with 0.2 vol% case.  相似文献   

4.
An experimental study was performed to investigate the nucleate boiling and critical heat flux (CHF) of water and FC-72 dielectric liquid on hydrophilic titanium oxide (TiO2) nanoparticle modified surface. A 1 cm2 copper heater with 1 μm thick TiO2 coating was utilized in saturated pool boiling tests with water and highly-wetting FC-72, and its performance was compared to that of a smooth surface. Results showed that TiO2 coated surface increased CHF by 50.4% and 38.2% for water and FC-72, respectively, and therefore indicated that boiling performance enhancement depends on the level of wettability improvement. A silicon oxide (SiO2) coated surface, exhibiting similar surface topology, was tested to isolate the roughness related enhancement from the overall enhancement. Data confirmed that hydrophilicity of TiO2 coated surface provides an additional mechanism for boiling enhancement.  相似文献   

5.
The flow boiling heat transfer in a single microchannel was investigated with pure water and nanofluid as the working fluids. The microchannel had a size of 7500 × 100 × 250 μm, which was formed by two pyrex glasses and a silicon wafer. A platinum film with a length of 3500 μm and a width of 80 μm was deposited at the bottom channel surface, acting as the heater and temperature sensor. The nanofluid had a low weight concentration of 0.2%, consisting of de-ionized water and 40 nm Al2O3 nanoparticles. The nanoparticle deposition phenomenon was not observed. The boiling flow displays chaotic behavior due to the random bubble coalescence and breakup in the milliseconds timescale at moderate heat fluxes for pure water. The flow instability with large oscillation amplitudes and long cycle periods was observed with further increases in heat fluxes. The flow patterns are switched between the elongated bubbles and isolated miniature bubbles in the timescale of 100 s. It is found that nanofluid significantly mitigate the flow instability without nanoparticle deposition effect. The boiling flow is always stable or quasi-stable with significantly reduced pressure drop and enhanced heat transfer. Miniature bubbles are the major flow pattern in the microchannel. Elongated bubbles temporarily appear in the milliseconds timescale but isolated miniature bubbles will occupy the channel shortly. The decreased surface tension force acting on the bubble accounts for the smaller bubble size before the bubble departure. The inhibition of the dry patch development by the structural disjoining pressure, and the enlarged percentage of liquid film evaporation heat transfer region with nanoparticles, may account for the heat transfer enhancement compared to pure water.  相似文献   

6.
We study the pool boiling heat transfer on the microheater surface with and without nanoparticles by pulse heating. Nanofluids are the mixture of de-ionized water and Al2O3 particles with 0.1%, 0.2%, 0.5% and 1.0% weight concentrations. The microheater is a platinum surface by 50 × 20 μm. Three types of bubble dynamics were identified. The first type of bubble dynamics is for the boiling in pure water, referring to a sharp microheater temperature increase once a new pulse cycle begins, followed by a continuous temperature increase during the pulse duration stage. Large bubble is observed on the microheater surface and it does not disappear during the pulse off stage. The second type of bubble dynamics is for the nanofluids with 0.1% and 0.2% weight concentrations. The microheater surface temperature has a sharp increase at the start of a new pulse cycle, followed by a slight decrease during the pulse duration stage. Miniature bubble has oscillation movement along the microheater length direction, and it disappears during the pulse off stage. The third type of bubble dynamics occurs at the nanofluid weight concentration of 0.5% and 1.0%. The bubble behavior is similar to that in pure water, but the microheater temperatures are much lower than that in pure water. A structural disjoining pressure causes the smaller contact area between the dry vapor and the heater surface, decreasing the surface tension effect and resulting in the easy departure of miniature bubbles for the 0.1% and 0.2% nanofluid weight concentrations. For the 0.5% weight concentration of nanofluids, coalescence of nanoparticles to form larger particles is responsible for the large bubble formation on the heater surface. The microlayer evaporation heat transfer and the heat transfer mechanisms during the bubble departure process account for the higher heat transfer coefficients for the 0.1% and 0.2% nanofluid weight concentrations. The shortened dry area between the bubble and the heater surface, and the additional thin nanofluid liquid film evaporation heat transfer, account for the higher heat transfer coefficient for the 0.5% nanofluid weight concentration, compared with the pure water runs.  相似文献   

7.
The pool boiling behavior of low concentration nanofluids (?1 g/l) was experimentally studied over a flat heater at 1 atm. Boiling of nanofluids produces a thin nanoparticle film, on the heater surface, which in turn is believed to increase the critical heat flux. The present study also indicates that the nanoparticle deposition results in transient characteristics in the nucleate boiling heat transfer. Finally, this study investigates possible causes responsible for the deposition of nanoparticle on the heater surface. Experimental evidence shows that microlayer evaporation, during nanofluid boiling, is responsible for the nanoparticle coating formed on the heater surfaces.  相似文献   

8.
This paper presents an experimental study on the convective boiling heat transfer and the critical heat flux (CHF) of ethanol–water mixtures in a diverging microchannel with artificial cavities. The results show that the boiling heat transfer and the CHF are significantly influenced by the molar fraction (xm) as well as the mass flux. For the single-phase convection region except for the region near the onset of nucleate boiling with temperature overshoot, the single-phase heat transfer coefficient is independent of the wall superheat and increases with a decrease in the molar fraction. After boiling incipience, the two-phase heat transfer coefficient is much higher than that of single-phase convection. The two-phase heat transfer coefficient shows a maximum in the region of bubbly-elongated slug flow and deceases with a further increase in the wall superheat until approaching a condition of CHF, indicating that the heat transfer is mainly dominated by convective boiling. A flow-pattern-based empirical correlation for the two-phase heat transfer coefficient of the flow boiling of ethanol–water mixtures is developed. The overall mean absolute error of the proposed correlation is 15.5%, and more than 82.5% of the experimental data were predicted within a ±25% error band. The CHF increases from xm = 0–0.1, and then decreases rapidly from xm = 0.1–1 at a given mass flux of 175 kg/m2 s. The maximum CHF is reached at xm = 0.1 due to the Marangoni effect, indicating that small additions of ethanol into water could significantly increase the CHF. On the other hand, the CHF increases with increasing the mass flux at a given molar fraction of 0.1. Moreover, the experimental CHF results are compared with existing CHF correlations of flow boiling of the mixtures in a microchannel.  相似文献   

9.
The need for higher pool boiling critical heat flux (CHF) in electronic cooling applications has turned attention to the use of binary mixtures of dielectric liquids. The available literature demonstrates that the addition of a liquid with higher saturation temperature, higher molecular weight, higher viscosity and higher surface tension can lead to significant enhancement of CHF, beyond what can be achieved through changes in pressure, liquid subcooling, and the product of surface effusivity and heater thickness. The current study focuses on extending the available data on mixture CHF enhancement, as well as pool boiling, on polished silicon surfaces to FC-72/FC-40 mixture ratios of 10%, 15%, and 20% of FC-40 by weight, a pressure range of between 1 and 3 atm, and fluid temperature from 22 to 45 °C, leading to high subcooling conditions. It is found that peak heat flux can be increased to as high as 56.8 W/cm2 compared to 25.2 W/cm2 for pure FC-72 at 3 atm and 22 °C. It is believed that the increase in the mixture latent heat of evaporation and surface tension, accompanying the depletion of the lower boiling point fluid in the wall region plays the major role in enhancing the critical heat flux for binary mixtures.  相似文献   

10.
This study constitutes an experimental investigation into the convective boiling heat transfer and critical heat flux (CHF) of methanol–water mixtures in a diverging microchannel with artificial cavities. Flow visualization shows that bubbles are generally nucleated at both the artificial cavities and side walls of the channel. This confirms the proper functioning of such artificial cavities. Consequently, the wall superheat of the onset nucleate boiling is significantly reduced. Experimental results show that the boiling heat transfer and CHF are significantly influenced by the molar fraction (xm) as well as the mass flux. The CHF increases with an increase in mass flux at the same molar fraction. On the other hand, the CHF increases slightly from xm = 0 to 0.3, and then decreases rapidly from xm = 0.3 to 1 at the same mass flux. The maximum CHF is reached at xm = 0.3, particularly for a mass flux of 175 kg/m2 s, due to the Marangoni effect. Flow visualization confirms that the Marangoni effect helps a region with a liquid film breakup persist to a higher heat flux, and therefore a higher CHF. Moreover, a new empirical correlation involving the Marangoni effect for the CHF on the flow boiling of methanol–water mixtures is developed. The present correlation prediction shows excellent agreement with the experimental data, and further confirms that the present correlation may predict the Marangoni effect on the CHF for the convective boiling heat transfer of binary mixtures.  相似文献   

11.
An experimental investigation into the effects of pressure and subcooling on the pool boiling critical heat flux from a bare silicon chip-like heater and from a silicon heater coated with microporous layers, is reported. The dual inline heater package was immersed in FC-72, a dielectric fluid, and the experiments were performed in the horizontal orientation, with subcooling varying between 0 K and 72 K, and the pressure between 101.3 kPa and 303.9 kPa. The maximum CHF values on the diamond-base microporous-coated silicon heater were found to reach 47 W/cm2, at 3 atm and nearly 50 K of subcooling, and to provide an average enhancement of approximately 60% over the values attained with un-treated silicon surfaces. An available CHF correlation, with a reported standard deviation of 12.5% for un-treated surfaces over a large range of pressures, subcoolings, and surface conditions, was shown to predict the pressure and subcooling effects on CHF from the surface-enhanced chip with a standard deviation of 12%.  相似文献   

12.
Nucleate pool boiling heat transfer of a refrigerant-based-nanofluid was investigated at different nanoparticle concentrations and pressures. TiO2 nanoparticles were mixed with the refrigerant HCFC 141b at 0.01, 0.03 and 0.05 vol%. The experiment was performed using a cylindrical copper tube as a boiling surface. Pool boiling experiments of nanofluid were conducted and compared with that of the base refrigerant. The results indicate that the nucleate pool boiling heat transfer deteriorated with increasing particle concentrations, especially at high heat fluxes. At 0.05 vol%, the boiling heat transfer curves were suppressed. At high pressures of 400 and 500 kPa, the boiling heat transfer coefficient at a specific excess temperature was almost the same.  相似文献   

13.
The critical heat flux (CHF) and heat transfer coefficient of de-ionized (DI) water pool boiling have been experimentally studied on a plain surface, one uniform thick porous structure, two modulated porous structures and two hybrid modulated porous structures. The modulated porous structure design has a porous base of 0.55 mm thick with four 3 mm diameter porous pillars of 3.6 mm high on the top of the base. The microparticle size combinations of porous base and porous pillars are uniform 250 μm, uniform 400 μm, 250 μm for base and 400 μm for pillars, and 400 μm for base and 250 μm for pillars. Both the CHF and heat transfer coefficient are significantly improved by the modulated porous. The boiling curves for different kinds of porous structures and a plain surface are compared and analyzed. Hydrodynamic instability for the two-phase change heat transfer has been delayed by the porous pillars which dramatically enhances the CHF. The highest pool boiling heat flux occurring on the modulated porous structures has a value of 450 W/cm2, over three times of the CHF on a plain surface. Additionally, the highest heat transfer coefficient also reaches a value of 20 W/cm2 K, three times of that on a plain copper surface. The study also demonstrates that the horizontal liquid replenishing is equally important as the vertical liquid replenishing for the enhancement of heat transfer coefficient and CHF improvement in nucleate pool boiling.  相似文献   

14.
《Energy Conversion and Management》2005,46(15-16):2455-2481
Enhanced boiling of HFE-7100 dielectric liquid on porous graphite measuring 10 mm × 10 mm is investigated, and results are compared with those for smooth copper (Cu) of the same dimensions. Although liquid is out-gassed for hours before performing the pool boiling experiments, air entrapped in re-entrant type cavities, ranging in size from tens to hundreds of microns, not only enhanced the nucleate boiling heat transfer and the critical heat flux (CHF), but also, the mixing by the released tiny air bubbles from the porous graphite prior to boiling incipience enhanced the natural convection heat transfer by ∼19%. No temperature excursion is associated with the nucleate boiling on porous graphite, which ensues at very low surface superheat of 0.5–0.8 K. Conversely, the temperature overshoot at incipient boiling on Cu is as much as 39.2, 36.6, 34.1 and 32.8 K in 0 (saturation), 10, 20 and 30 K subcooled boiling, respectively. Nucleate boiling ensues on Cu at a surface superheat of 11.9, 10.9, 9.5 and 7.5 K in 0 (saturation), 10, 20 and 30 K subcooled boiling, respectively. The saturation nucleate boiling heat flux on porous graphite is 1700% higher than that on Cu at a surface superheat of ∼10 K and decreases exponentially with increased superheat to ∼60% higher near CHF. The CHF values of HFE-7100 on porous graphite of 31.8, 45.1, 55.9 and 66.4 W/cm2 in 0 (saturation), 10, 20 and 30 K subcooled boiling, are 60% higher and the corresponding superheats are 25% lower than those on Cu. In addition, the rate of increase in CHF with increased liquid subcooling is 50% higher than that on Cu.  相似文献   

15.
The critical heat flux (CHF) is one of the most important thermal hydraulic parameters in heat transfer system design and safety analyses. CHF enhancement allows higher limits of operation conditions such that heat transfer equipment can be operated safely with greater margins and better economy. The application of nano-fluids is thought to have strong potential for enhancing the CHF. In this study, zeta potentials of Al2O3 nano-fluids were measured and flow boiling CHF enhancement experiments using Al2O3 nano-fluids were conducted under atmospheric pressure. The CHFs of Al2O3 nano-fluids were enhanced up to ~70% in flow boiling for all experimental conditions. Maximum CHF enhancement (70.24%) was shown at 0.01 vol% concentration, 50 °C inlet subcooling, and a mass flux of 100 kg/m2 s. Inner surfaces of the test section tube were observed by FE–SEM and the zeta potentials of Al2O3 nano-fluids were measured before and after the CHF experiments.  相似文献   

16.
The boiling in cross-flow is investigated for coated tubes (low-porosity, flame-sprayed) in this paper. The effect of surface roughness on flow boiling heat transfer for a horizontal tube surface in cross-flow is studied for saturated boiling of water at atmospheric pressure. The parameters varied were for flow velocity up to 3.24 kg/s (G = 258.49 kg/m2 s), heat flux from 12 to 45 kW/m2, surface roughness (Ra) from 0.3296 to 4.731 μm. Nominal enhancement in heat transfer coefficient at higher mass flux may be attributed to the continued nucleation at the uppermost surfaces (in the wake region of the flow) of the rougher tubes thereby increasing the overall heat transfer rate. The flow boiling data was found to best fit the Kutateladze asymptotic equation h = hl[1 + (hnpb/hl)n]1/n with the value of n = 2.258 (which is close to the value of n = 2 suggested by Kutateladze).  相似文献   

17.
Observations of boiling behaviors and measurements of critical heat flux (CHF) were carried out for saturated water boiling on a horizontal, upward-facing plate at pressures from atmospheric to 7 MPa. The primary bubbles diminish in size almost in inverse proportion to pressure and commence to coalesce in the very low heat flux region. The diameter of detached coalesced bubbles increases with increases in the heat flux and reaches about 10 mm even at a pressure of 5 MPa. Detachment frequency of the coalesced bubbles was unaffected by the heat flux and pressure. The CHF predicted based on the macrolayer dryout model agrees well with the measured data.  相似文献   

18.
This work concerns with the study of natural convection heat transfer in rectangular cavities with an inside oval-shaped heat source filled with Fe3O4/water nanofluid. The finite element method is employed to solve the governing equations for this problem. Average Nusselt numbers are presented for a wide range of Rayleigh number (103  Ra  105), volume fraction of nanoparticles (0  ϕ  14%), and four different size and shapes of the heat source. Depending on concentration of the nanoparticle, geometry of the heat source, and the value of Rayleigh number different behaviors are monitored for average Nusselt numbers. Configuration of the heat source dictates a significant change on the behavior of the average Nusselt number, while addition of the nanoparticles has a negative effect on the magnitude of Nusselt number for this problem.  相似文献   

19.
Effect of nanoparticle size on nucleate pool boiling heat transfer of refrigerant/oil mixture with nanoparticles was investigated experimentally. For the preparation of the test fluid, refrigerant R113, ester oil VG68, and Cu nanoparticles with three different average diameters of 20, 50 and 80 nm were used. Experimental conditions include a saturation pressure of 101.3 kPa, heat fluxes from 10 to 80 kW m?2, nanoparticle concentrations in the nanoparticles/oil suspension from 0 to 30 wt%, and nanoparticles/oil suspension concentrations from 0 to 5 wt%. The experimental results indicate that the nucleate pool boiling heat transfer coefficient of R113/oil mixture with Cu nanoparticles is enhanced by a maximum of 23.8% with the decrease of nanoparticle size from 80 to 20 nm under the present experimental conditions, and the enhancement increases with the decrease of nanoparticles/oil suspension concentration or the increase of nanoparticles concentrations in the nanoparticles/oil suspension. A general nucleate pool boiling heat transfer coefficient correlation for refrigerant/oil mixture with nanoparticles is proposed, and it agrees with 93% of the existing experimental data of refrigerant/oil mixture with nanoparticles within a deviation of ±20%.  相似文献   

20.
Shell and tube heat exchanger is one of the most prevalent heat exchangers with a wide variety of industrial applications, i.e., power plants, chemical processes, marine industries, HVAC systems, cooling of hydraulic fluid and engine oil in heavy duty diesel engines and the like specifically where a need to heat or cool a large fluid volume exist and also higher-pressure use. In the present study, the effect of using Al2O3-water nanofluid on thermal performance of a commercial shell and tube heat exchanger with segmental baffles is assessed experimentally. For this purpose, Al2O3-gamma nanoparticles with 15 nm mean diameter (99.5% purity) and Sodium Dodecyl Benzene Sulphonate (SDBS) as surfactant are used to make aqueous Al2O3 nanofluid at three various volume fractions of nanoparticles (φ = 0.03, 0.14 and 0.3%). Indeed, in this paper the effect of some parameters of hot working fluid such as Reynolds number and volume concentration of nanoparticles on heat transfer characteristics, friction factor and thermal performance factor of a shell and tube heat exchanger under laminar flow regime is investigated. The results indicate a substantial increment in Nusselt number as well as the overall heat transfer coefficient of heat exchanger by enhancement of Reynolds number and it can be seen that, at a certain Reynolds number, heat transfer characteristics of heat exchanger increase as the nanoparticles volume concentration increases. Outcomes of the heat transfer evaluation demonstrate that applying nanofluids instead of base fluid lead to increment of Nusselt number up to 9.7, 20.9 and 29.8% at 0.03, 0.14 and 0.3 vol%, respectively. Likewise it is seen that at mentioned nanoparticles volume fractions, overall heat transfer coefficient of heat exchanger enhances around 5.4, 10.3 and 19.1%, respectively. In term of pressure drop, a little penalty is found by using nanofluid in the test section. Eventually a thermal performance assessment on the heat exchanger was conducted. According to the analysis results, utilizing nanofluid at minimum and maximum nanoparticles volume fractions (φ = 0.03 and 0.3%) results in average augmentation of around 6.5% and 18.9% in thermal performance factor (η) of the heat exchanger compared to the base liquid, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号