首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 921 毫秒
1.
In the study presented in this article, the influence of added alpha-lactalbumin and beta-lactoglobulin on the changes that occur in casein micelles at 250 and 300 MPa were investigated by in-situ measurement of light transmission. Light transmission of a serum protein-free casein micelle suspension initially increased with increasing treatment time, indicating disruption of micelles, but prolonged holding of micelles at high pressure partially reversed HP-induced increases in light transmission, suggesting reformation of micellar particles of colloidal dimensions. The presence of alpha-la and/or beta-lg did not influence the rate and extent of micellar disruption and the rate and extent of reformation of casein particles. These data indicate that reformation of casein particles during prolonged HP treatment occurs as a result of a solvent-mediated association of the micellar fragments. During the final stages of reformation, kappa-casein, with or without denatured whey proteins attached, associates on the surface of the reformed particle to provide steric stabilisation.  相似文献   

2.
High hydrostatic pressure disruption of casein micelle isolates was studied by analytical ultracentrifugation and transmission electron microscopy. Casein micelles were isolated from skim milk and subjected to combinations of thermal treatment (85 degrees C, 20 min) and high hydrostatic pressure (up to 676 MPa) with and without whey protein added. High hydrostatic pressure promoted extensive disruption of the casein micelles in the 250 to 310 MPa pressure range. At pressures greater than 310 MPa no further disruption was observed. The addition of whey protein to casein micelle isolates protected the micelles from high hydrostatic pressure induced disruption only when the mix was thermally processed before pressure treatment. The more whey protein was added (up to 5 g/l) the more the protection against high hydrostatic pressure induced micelle disruption was observed in thermally treated samples subjected to 310 MPa.  相似文献   

3.
ABSTRACT: It was found that ultra-high temperature (UHT) treatment of sodium caseinate and native whey protein-depleted micellar casein drastically increases the protein polymerization effect of an enzymatic treatment by microbial transglutaminase (TG). As a result the concentration of the isopeptide ε-(γ-glutamyl)lysine was increased significantly in UHT-treated micellar casein solutions after TG incubation compared with the unheated casein solution. Sodium caseinate was more susceptible to the cross-linking reaction as compared with the native casein micelles. The results demonstrate that the protein structure significantly affects the TG cross-linking reaction. The effect of an UHT treatment was considered to be related to a better TG accessibility due to a more open casein micelle structure and to the inactivation of a TG inhibitor substance. The results demonstrate that an unidentified component in the natural milk serum inhibits the TG reaction. The thermal inactivation of a TG inhibitor is the dominant effect explaining the improved cross-linking of UHT-treated casein micelles as well as sodium caseinate.  相似文献   

4.
The effect of pH (from 5.5 to 7.5) and temperature (from 5 to 40°C) on the turbidity of reconstituted skim milk powder was investigated at ambient pressure and in situ under pressure (up to 500 MPa) by measurement of light scattering. High-pressure treatment reduced the turbidity of milk for all combinations of pH and temperature due to micelle dissociation. The turbidity profiles had a characteristic sigmoidal shape in which almost no effect on turbidity was observed at low pressures (100 MPa), followed by a stronger pressure dependency over a pressure range of 150 MPa during which turbidity decreased extremely. From the turbidity profiles, the threshold pressure for disruption of micelle integrity was determined and ranged from 150 MPa at low pH to 350-400 MPa at high pH. The threshold pressure diagram clearly showed a relationship between the barostability of casein micelles and pH, whereas almost no effect of temperature was shown. This remarkable pH effect was a consequence of pressure-induced changes in the electrostatic interactions between colloidal calcium phosphate and the caseins responsible for maintaining micellar structure and was explained by a shift in the calcium phosphate balance in the micelle-serum system. Accordingly, a mechanism for high pressure-induced disruption of micelle integrity is suggested in which the state of calcium plays a crucial role in the micelle dissociation process.  相似文献   

5.
Effects of high pressure (HP) on average casein micelle size and denaturation of alpha-lactalbumin (alpha-la) and beta-lactoglobulin (beta-lg) in raw skim bovine milk were studied over a range of conditions. Micelle size was not influenced by treatment at pressures <200 MPa, but treatment at 250 MPa increased micelle size by approximately 25%, while treatment at > or = 300 MPa irreversibly reduced it to approximately 50% of that in untreated milk. The increase in micelle size after treatment at 250 MPa was greater with increasing treatment time and temperature and milk pH. Treatment times > or = 2 min at 400 MPa resulted in similar levels of micelle disruption, but increasing milk pH to 7.0 partially stabilised micelles against HP-induced disruption. Denaturation of alpha-la did not occur < or = 400 MPa, whereas beta-lg was denatured at pressures >100 MPa. Denaturation of alpha-la and beta-lg increased with increasing pressure, treatment time and temperature and milk pH. The majority of denatured beta-lg was apparently associated with casein micelles. These effects of HP on casein micelles and whey proteins in milk may have significant implications for properties of products made from HP-treated milk.  相似文献   

6.
Native casein micelles were isolated from raw skim milk by ultrafiltration (< 30 kDa) or microfiltration (< 0.2 μm) and subjected to high-pressure homogenization (HPH) at 100, 200, 250, 300, and 350 MPa. Of particular interest was the effect of HPH on casein micelle size in solutions varying in ionic strength (0, 5, 10, and 15 mM CaCl2) and micelle size populations. Particle size distribution reflected an initial decrease in micelle diameter in all samples at 100 MPa. In samples containing 10 and 15 mM CaCl2, there was an abrupt increase in particle size and subsequent casein precipitation followed by sedimentation upon centrifugation at elevated pressures (300 and 350 MPa). The amount of sedimentable casein protein increased as CaCl2 concentration (10 and 15 mM) and pressure (300 and 350 MPa) increased as determined by UV absorbance of sample supernatant. SDS-PAGE indicated extensive micellar disruption at elevated pressures (300 and 350 MPa) and confirmed that the sedimented portion of the samples contained casein proteins and minimal amounts of whey proteins. Results indicated that through HPH treatment casein micelle size can be modified based on CaCl2 concentration and pressure applied. Based on these findings, HPH in combination with an appropriate suspending medium has the ability to modify micelles to a desired size for a number of potential applications.Industrial relevanceThe modification of structure-function properties of the casein micelle from bovine milk by using high-pressure homogenization is relevant in (1) the development of new ingredients to change rheological/textural properties of dairy based foods, and (2) the discovery of new and/or improved functionalities for protein quaternary structures.  相似文献   

7.
The impact of pH, calcium and casein concentrations, and temperature on the efficiency of the differential precipitation of caseins by calcium affinity was investigated, using native phosphocaseinate as starting material. We adapted one of the most recent methods for the separation of caseins that is based on the addition of calcium at alkaline pH. Increasing the pH to 11 disturbed the micellar structure by enhancing electrostatic repulsion of caseins, leading to a marked viscosity increase and a significant particle size decrease, indicating casein micelle disruption. This pH-driven increase in negative charges enhanced the affinity of individual caseins for calcium, proportionally to the number of phosphate groups carried by each casein. The addition of calcium first led to a progressive increase in the proportion of precipitated caseins, before reaching a plateau. Hence, an optimal calcium/casein molar ratio of about 40 was evidenced to optimise casein precipitation (and fractionation), leading to significant depletion of α-casein (around 80%) and, in a lesser extent, β-casein (around 65%) and κ-casein (around 55%). This method led to relative proportions of caseins significantly differing from the starting material: 31% α-casein, 45% β-casein and 24% κ-casein.  相似文献   

8.
Factors affecting the cross-linking of milk proteins by transglutaminase (TGase) were studied. Cross-linking of caseins in bovine skim milk was optimal over a very wide pH range. The role of micellar calcium phosphate (MCP) in maintaining the integrity of TGase-treated casein micelles was studied by incubating skim milk with 0.01% (w/v) TGase at 30°C for 1–24 h, followed by removal of MCP from untreated or TGase-treated milk by acidification and dialysis. The protein content and profile of the samples were determined by Kjeldahl and SDS-PAGE, respectively. Whey proteins in unheated milk were not susceptible to TGase-induced cross-linking. The higher level of sedimentable protein in MCP-free TGase-treated milk than in MCP-free control milk indicated that TGase treatment partially prevented disintegration of the micelle on removal of MCP, probably due to extensive intramicellar TGase-induced cross-linking of casein molecules which led to the formation of sedimentable covalently bonded casein aggregates.  相似文献   

9.
In this study, caseins micelles were internally cross-linked using the enzyme transglutaminase (TGase). The integrity of the micelles was examined on solubilization of micellar calcium phosphate (MCP) or on disruption of hydrophobic interactions and breakage of hydrogen bonds. The level of monomeric caseins, determined electrophoretically, decreased with increasing time of incubation with TGase at 30°C; after incubation for 24 h, no monomeric β- or κ-caseins were detected, whereas only a small level of monomeric αS1-casein remained, suggesting near complete intramicellar cross-linking. The ability of casein micelles to maintain structural integrity on disruption of hydrophobic interactions (using urea, sodium dodecyl sulfate, or heating in the presence of ethanol), solubilization of MCP (using the calcium-chelating agent trisodium citrate) or high-pressure treatment was estimated by measurement of the L*-value of milk; i.e., the amount of back-scattered light. The amount of light scattered by casein micelles in noncross-linked milk was reduced by >95% on complete disruption of hydrophobic interactions or complete solubilization of MCP; treatment of milk with TGase increased the stability of casein micelles against disruption by all methods studied and stability increased progressively with incubation time. After 24 h of cross-linking, reductions in the extent of light scattering were still apparent in the presence of high levels of dissociating agents, possibly through citrate-induced removal of MCP nanoclusters from the micelles, or urea- or sodium dodecyl sulfate-induced increases in solvent refractive index, which reduce the extent of light-scattering.  相似文献   

10.
The effect of high hydrostatic pressure on turbidity of skim milk was measured in situ together with casein micelle size distribution. High pressure (HP) treatment reduced the turbidity of milk with a stronger pressure dependency between 50 and 300 MPa when the temperature was decreased from 20 to 5 °C, while at 30 °C (50–150 MPa) turbidity exceeded that of untreated milk. At 250 and 300 MPa turbidity decreased extremely. During pressurization of milk at 250 and 300 MPa, the turbidity initially decreased, but treatments longer than 10 min increased the turbidity progressively, indicating that re-association followed dissociation of casein micelles. Especially at 40 °C and at 250 and 300 MPa, the turbidity increased beyond untreated milk. Dynamic light scattering was used to investigate casein micelle sizes in milk immediately after long time (up to 4 h) pressurization at 250 and 300 MPa and casein micelle size distributions were bimodal with micelle sizes markedly smaller and markedly larger than those of untreated milk. Pressure modified casein micelles present after treatment of milk at 250 and 300 MPa were concluded to be highly unstable, since the larger micelles induced by pressure showed marked changes toward smaller particle sizes in milk left at ambient pressure.  相似文献   

11.
Reconstituted micellar casein concentrates and milk protein concentrates of 2.5 and 10% (wt/vol) protein concentration were subjected to high-pressure processing at pressures from 150 to 450 MPa, for 15 min, at ambient temperature. The structural changes induced in milk proteins by high-pressure processing were investigated using a range of physical, physicochemical, and chemical methods, including dynamic light scattering, rheology, mid-infrared spectroscopy, scanning electron microscopy, proteomics, and soluble mineral analyses. The experimental data clearly indicate pressure-induced changes of casein micelles, as well as denaturation of serum proteins. Calcium-binding αS1- and αS2-casein levels increased in the soluble phase after all pressure treatments. Pressurization up to 350 MPa also increased levels of soluble calcium and phosphorus, in all samples and concentrations, whereas treatment at 450 MPa reduced the levels of soluble Ca and P. Experimental data suggest dissociation of calcium phosphate and subsequent casein micelle destabilization as a result of pressure treatment. Treatment of 10% micellar casein concentrate and 10% milk protein concentrate samples at 450 MPa resulted in weak, physical gels, which featured aggregates of uniformly distributed, casein substructures of 15 to 20 nm in diameter. Serum proteins were significantly denatured by pressures above 250 MPa. These results provide information on pressure-induced changes in high-concentration protein systems, and may inform the development on new milk protein-based foods with novel textures and potentially high nutritional quality, of particular interest being the soft gel structures formed at high pressure levels.  相似文献   

12.
A survey is given of the relationships between various properties of artificial casein micelle systems and their composition with respect to alphas1-, beta and kappa-casein, colloidal phosphate and citrate. Properties investigated were: the amount of colloidal phosphate, the micellar size, and the stability of the micelle towards dialysis, pressure, ethanol and heat.  相似文献   

13.
The influence of transglutaminase (TGase)-induced cross-linking on the ethanol stability of skimmed milk was investigated. The stability of milk against ethanol-induced coagulation increased in sigmoidal fashion with milk pH (5.0–7.5) for all samples; ethanol stability also increased upon incubation (0–24 h) with 0.05 g L−1 TGase at 30 °C. In untreated milk, addition of ethanol induced a collapse of the polyelectrolyte brush of κ-casein on the micelle surface, thereby facilitating micellar aggregation. Dynamic and static light scattering measurements indicated that in TGase-treated milk, the ethanol-induced collapse of the polyelectrolyte brush was far less than in untreated milk, suggesting that the increased ethanol stability of TGase-treated casein micelles is caused by the cross-linking of the polyelectrolyte brush on the micellar surface.  相似文献   

14.
E. Cases    V. Vidal    J.L. Cuq 《Journal of food science》2003,68(8):2406-2410
ABSTRACT: The relationship between the content of N-acetylneuraminic acid residues of micellar K-casein and acid coagulability of milk was investigated. At 30 °C, partial deglycosylation of micellar K-casein does not significantly affect the content of micellar proteins, micellar surface charge, and micellar solvation. Casein micelles modified by the release of part of the N-acetylneuraminic acid residues showed a shorter acid gelation time, a higher rate of gel strengthening, and a higher final firmness. This enhancement in the gelation ability of the neuraminidase-treated casein micelles of milk should appear as the result of increase in number of hydrophobic sites on the surface of casein micelle due to enzymatic deglycosylation of micellar K-casein.  相似文献   

15.
Physicochemical properties of carbonated milk have been examined. Carbonated milk had higher viscosity and longer shelf-life than non-carbonated milk. The size of casein micelle particles in milk was reduced upon carbonation. Consequently, the amount of total casein in the smallest casein micellar fraction was greatly increased. This change in casein micelle distribution was not reversed after carbon dioxide was removed. These changes in micellar distribution were not simply due to pH decrease in the carbonated milk.  相似文献   

16.
The enzymatic cross-linking of casein micelles with transglutaminase had an adverse influence on rennet-induced coagulation. Incubation with transglutaminase at 30 °C progressively reduced the levels of monomeric caseins and increased rennet flocculation time (RFT) in a Berridge test. For incubation up to 3 h at 30 °C, the reciprocal of the RFT was linearly correlated with the level of residual monomeric κ-casein, indicating that at complete cross-linking flocculation is absent. After treatment for 4–24 h at 30 °C, no residual monomeric κ-casein was detected and no rennet-induced flocculation of the casein micelle suspension was observed. Monitoring rennet-induced coagulation by diffusing wave spectroscopy revealed that transglutaminase-induced inhibition of rennet-induced coagulation of casein micelles is primarily due to an inhibition of the secondary phase of rennet coagulation, i.e., the gelation and gel-firming phase of the casein micelle coagulation. The gelation and fusion of κ-casein-depleted para-casein micelles as in normal milk appears to be absent if the casein macropeptide remains attached to the casein micelle.  相似文献   

17.
Caseins - the main constituents of bovine milk proteins - self-assemble into large supramolecular aggregates, so-called casein micelles. The enhancement of the stability of casein micelles is advantageous with respect to technological milk processing. A promising approach to accomplish this goal is the cross-linking of caseins using microbial transglutaminase (mTG). The present paper describes the combined use of liquid- and solid-state 31P NMR spectroscopy as well as dynamic light scattering in order to characterize the influence of an mTG treatment upon the structure of micelles in ultrahigh temperature (UHT)-treated skim milk at a molecular level. Liquid-state 31P NMR spectroscopy was applied to characterize milk, milk serum and casein dispersions. A narrow SerP signal in the liquid-state 31P NMR spectra of UHT-treated milk is shown to be due to casein molecules in the milk serum whereas the casein molecules bound in the micelles give rise to broad signals. Most of the caseins contribute to a 3 kHz broad background signal which can be visualized in the spectrum of suspensions of re-dispersed micellar material derived from UHT-treated milk. Treatment with mTG results in a cross-linking of caseins, which could be followed by liquid-state 31P NMR spectroscopy. Especially, the cross-linking of β-casein was demonstrated by quantitative liquid-state 31P NMR experiments. Furthermore, the stability of cross-linked micellar aggregates against EDTA could be investigated by liquid-state 31P HR NMR in combination with dynamic light scattering (DLS). Solid-state 31P NMR was used to show that the motional state of the κ-caseins located at the outer surface of the micelles derived from UHT-treated milk is not significantly changed by the applied mTG treatment.  相似文献   

18.
Heat (85 degrees C for 20 min) and pressure (600 MPa for 15 min) treatments were applied to skim milk fortified by addition of whey protein concentrate. Both treatments caused > 90 % denaturation of beta-lactoglobulin. During heat treatment this denaturation took place in the presence of intact casein micelles; during pressure treatment it occurred while the micelles were in a highly dissociated state. As a result micelle structure and the distribution of beta-lactoglobulin were different in the two milks. Electron microscopy and immunolabelling techniques were used to examine the milks after processing and during their transition to yogurt gels. The disruption of micelles by high pressure caused a significant change in the appearance of the milk which was quantified by measurement of the colour values L*, a* and b*. Heat treatment also affected these characteristics. Casein micelles are dynamic structures, influenced by changes to their environment. This was clearly demonstrated by the transition from the clusters of small irregularly shaped micelle fragments present in cold pressure-treated milk to round, separate and compact micelles formed on warming the milk to 43 degrees C. The effect of this transition was observed as significant changes in the colour indicators. During yogurt gel formation, further changes in micelle structure, occurring in both pressure and heat-treated samples, resulted in a convergence of colour values. However, the microstructure of the gels and their rheological properties were very different. Pressure-treated milk yogurt had a much higher storage modulus but yielded more readily to large deformation than the heated milk yogurt. These changes in micelle structure during processing and yogurt preparation are discussed in terms of a recently published micelle model.  相似文献   

19.
ABSTRACT: The addition of sodium dodecyl sulfate (SDS) during skim-milk reconstitution contributed to a modification of hydrophobic interactions and, consequently, to change in the micellar structure. SDS-induced modifications in casein micelles were investigated by biochemical measurements (soluble mineral and protein analyses, granulometric and electrokinetic potential measurements, and casein micelle solvation). SDS induced micellar κ-casein dissociation and caused a decrease in steric, hydration, and electrostatic repulsive forces between casein micelles and as a result altered micellar stability. Consequently, SDS-modified micelle aggregation occurred. Mineral analysis indicated that Ca, PO43- and Mg partitioning between aqueous phase and curd is similar, suggesting a possible bridging mechanism via minerals and SDS molecules.  相似文献   

20.
Enrichment of milk with micellar casein decreases water transfer during the rehydration of milk powders. In this study, the effects of the ion environment and the ion addition method on the rehydration kinetics were found to be dependent on the changes in the micellar casein. For example, adding citrate or phosphate solution to the micellar casein suspension before drying considerably increased rehydration rates and this was related to the destruction of the micelle structure. Water transfer in the casein suspension was improved by adding NaCl during rehydration: this effect may be explained by the more hygroscopic nature of NaCl rather than by extensive modification of the micellar structure. The addition of CaCl2 considerably affected micelle organization and led to the formation of insoluble structures during spray drying.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号