首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The aim of this research was to investigate the influence of lignin modified by ionic liquids on physical and mechanical properties of plywood panels bonded with the urea–formaldehyde (UF) resin. For this purpose, soda bagasse lignin was modified by the 1-ethyl-3-methylimidazolium acetate ([Emim][OAc]) ionic liquid and then the various contents of unmodified and modified lignins (10, 15, and 20%) were added at pH=7 instead of second urea during the UF resin synthesis. The physicochemical properties of the prepared resins as well as the water absorption, shear strength, and formaldehyde emission of the plywood panels made with these adhesives were measured according to standard methods. According to Fourier Transform Infrared (FTIR) Spectrometry, by treatment of lignin, the C=O, C–C, and C–H bonds decrease while the content of the C–N bond dramatically increases. Based on the finding of this research, the performance of soda bagasse lignin in UF resins dramatically improves by modification by ILs; as the resins with modified lignin yielded lower formaldehyde emission and water absorption when compared to those made from unmodified lignin and commercial UF adhesives, respectively. The shear strength as well as wood failure percentages are lower for the panels produced with modified lignin than for the panels produced with UF resins alone.  相似文献   

2.
The aim of this research was to compare the influence of modified lignin by ionic liquid (IL) on the physical and mechanical properties of wood-based panels bonded with urea-formaldehyde (UF) resin with the effect of glyoxalated lignin (GL) on UF properties. For this purpose, soda bagasse lignin was respectively modified by 1-ethyl-3-methylimidazolium acetate ([Emim][OAc]) IL and glyoxal and then the various content of modified lignins (10, 15, and 20%) were added at pH=7 during the UF resin synthesis instead of the second urea . The changes in the structure and thermal properties of lignin, after and before modification with glyoxal and IL, were analyzed by Fourier transform infrared spectrometry (FTIR) and differential scanning calorimetry (DSC). The physicochemical properties of the prepared resins as well as the water absorption, shear strength, and formaldehyde emission of the plywood panels made with these adhesives were measured according to standard methods. According to the FTIR spectra, the content of C=O bond increased in GL while in the IL-treated lignin the content of C–N bond markedly increased. DSC analysis indicated that lignin modified by IL had lower glass transition temperature (Tg) value compared to those modified with glyoxal and unmodified lignin, respectively. The UF resins containing IL-treated lignin exhibit a faster gel time compared to those prepared with GL. Equally, the plywood panels prepared with an IL had lower formaldehyde emission and higher mechanical strength compared to those made from UF resin containing GL. There were no significant differences in dimensional stability of the panels bonded with UFs modified with GL and those with IL-modified lignin.  相似文献   

3.
The aim of this research was to investigate the effect of polymeric 4, 4 diphenyl methane diisocyanate (pMDI) on the physical and mechanical properties of plywood panels bonded with an ionic liquid (IL)-treated lignin-urea-formaldehyde resin. Soda lignin modified by 1-ethyl-3-methylimidazolium acetate ([Emim][OAc]) IL was added to a urea formaldehyde (UF) resin during resin synthesis to prepare a lignin-urea-formaldehyde (LUF) resin. pMDI at various contents (2, 4, and 6% on resin solids) was then added to prepare a LUF resin. The thermal and physicochemical properties of the resins prepared as well as the water absorption, shear strength, and formaldehyde emission of the plywood panels bonded with them were measured according to standard methods. DSC analysis indicated that the addition of pMDI decreases the gel onset and curing temperatures of the LUF resin. According to the results obtained, the addition of pMDI significantly increased the viscosity and solid content and accelerated the gelation time of LUF resins. Based on the findings of this research, the addition of pMDI dramatically improves the performance of LUF resins as a new adhesive for wood-based panels. The LUF resins with isocyanate added yielded panels presenting lower formaldehyde emission and lower water absorption content when compared to those bonded with the control LUF resins. Greater dry and wet shear strength can be obtained by a small addition of pMDI to LUF resins.  相似文献   

4.
In this research, the influence of nanoclay on urea–glyoxalated lignin–formaldehyde (GLUF) resin properties has been investigated. To prepare the GLUF resin, glyoxalated soda baggase lignin (15 wt%) was added as an alternative for the second urea during the UF resin synthesis. The prepared GLUF resin was mixed with the 0.5%, 1%, and 1.5% nanoclay by mechanically stirring for 5 min at room temperature. The physicochemical properties of the prepared resins were measured according to standard methods. Then the resins were used in particleboard production and the physical and mechanical properties of the manufactured panels were determined. Finally, from the results obtained, the best prepared resin was selected and its properties were analyzed by differential scanning calorimetry (DSC), Fourier transform infrared spectrometry (FTIR), and X-ray diffractometry (XRD). Generally the results indicated that the addition of sodium-montmorillonite (NaMMT) up to 1.5% appears to improve the performance of GLUF resins in particleboards. The results also showed that nanoclays improved mechanical strength (modulus of elasticity (MOE), Modulus of Rupture (MOR), and internal bond (IB) strength) of the panels bonded with GLUF resins. The panels containing GLUF resin and nanoclay yielded lower formaldehyde emission as well as water absorption content than those made from the neat GLUF resins. XRD characterization indicated that NaMMT only intercalated when mixed with GLUF resin. Based on DSC results, the addition of NaMMT could accelerate the curing of GLUF resins. The enthalpy of the cure reaction (ΔH) of GLUF resin containing NaMMT was increased compared with neat GLUF resin. Also the results of FTIR analysis indicated that addition of NaMMT change the GLUF resins structures.  相似文献   

5.
为了降低脲醛树脂的游离甲醛含量及其胶接制品的甲醛释放量,本研究在脲醛树脂合成过程中加入改性剂代替部分甲醛,通过尿素-甲醛-改性剂发生共缩聚反应,合成了改性脲醛树脂。研究了改性剂取代甲醛的摩尔比对改性脲醛树脂固化速度、游离甲醛含量的影响,以及在不同的热压条件下,对胶接胶合板的胶合强度和甲醛释放量的影响。研究结果表明,改性剂的加入不仅能有效降低改性脲醛树脂的游离甲醛含量及其胶合板的甲醛释放量,还能提高胶合板的胶合强度和耐水性。  相似文献   

6.
尤戎(Uron)树脂及其用法对脲醛树脂性能的影响   总被引:2,自引:0,他引:2  
以不同工艺制备了三种含尤戎结构的脲醛树脂(Uron树脂),通过其与普通脲醛树脂的混合制得多种混合脲醛树脂。研究了Uron树脂及其使用方法对降低脲醛树脂胶粘剂游离甲醛含量及胶接胶合板甲醛释放量的作用与效果。结果表明:1)三种不同摩尔比的Uron树脂对脲醛树脂游离甲醛含量及胶接胶合板甲醛释放量都有明显的降低作用,游离甲醛含量最多可降低43%,甲醛释放量最多可降低61%;2)Uron树脂的添加量在10%-20%时对胶合强度的提高有利,强度最大可提高29%;3)低摩尔比Uron树脂对脲醛树脂的改性效果优于高摩尔比Uron树脂。  相似文献   

7.
The aim of this research was to investigate the physical and mechanical properties of plywood panels bonded with ionic liquid-modified lignin–phenol–formaldehyde (LPF) resin. For this purpose, soda bagasse lignin was modified by 1-ethyl-3-methylimidazolium acetate ([Emim][OAc]) ionic liquid, and then, various contents of modified lignins (10, 15, and 20 wt%) were added as a substitute of phenol in phenol–formaldehyde (PF) resin synthesis. The properties of the synthesized resin were compared with those of a control PF resin. The changes in curing behavior of the resins prepared were analyzed by differential scanning calorimetry (DSC). The physical properties of the resins prepared, as well as the water absorption, thickness swelling, shear strength, and formaldehyde emission of the plywood panels bonded with these adhesives, were measured according to standard methods. DSC analysis indicated that in comparison with PF resins, curing of the LPF resin occurred at lower temperatures. The physical properties of the synthesized resins indicated that viscosity and solid content increased, while gel time and density decreased by addition of treated lignin to the PF resin. Although the panels containing resins with modified lignin yielded low formaldehyde emission, their dimensional stability was worse than those bonded with a commercial PF adhesive. The plywood prepared using IL-treated lignin PF resins has shear strength, which satisfy the requirements of the relevant standards specifications and significantly better than that of panels prepared with the control PF resin. The mechanical properties of the panels could be significantly enhanced with increased percentage of treated lignin content from 0 to 20 wt%.  相似文献   

8.
Urea‐formaldehyde (UF) resins are prone to hydrolysis that results in low‐moisture resistance and subsequent formaldehyde emission from UF resin‐bonded wood panels. This study was conducted to investigate hydrolytic stability of modified UF resins as a way of lowering the formaldehyde emission of cured UF resin. Neat UF resins with three different formaldehyde/urea (F/U) mole ratios (1.4, 1.2, and 1.0) were modified, after resin synthesis, by adding four additives such as sodium hydrosulfite, sodium bisulfite, acrylamide, and polymeric 4,4′‐diphenylmethane diisocyanate (pMDI). All additives were added to UF resins with three different F/U mole ratios before curing the resin. The hydrolytic stability of UF resins was determined by measuring the mass loss and liberated formaldehyde concentration of cured and modified UF resins after acid hydrolysis. Modified UF resins of lower F/U mole ratios of 1.0 and 1.2 showed better hydrolytic stability than the one of higher F/U mole ratio of 1.4, except the modified UF resins with pMDI. The hydrolytic stability of modified UF resins by sulfur compounds (sodium bisulfate and sodium hydrosulfite) decreased with an increase in their level. However, both acrylamide and pMDI were much more effective than two sulfur compounds in terms of hydrolytic stability of modified UF resins. These results indicated that modified UF resin of the F/U mole ratio of 1.2 by adding acrylamide was the most effective in improving the hydrolytic stability of UF resin. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

9.
The incorporation of the modified starch (MS) in urea‐formaldehyde resins at different stage of the synthesis was studied in this article. The synthesized resins were characterized by Fourier transform infrared spectroscopy, indicating that the ester bond can be introduced into the UF structure after the addition of MS. The curing reactions were examined with differential scanning calorimetry and it reveals that curing temperature of UF resin are slightly shifted to higher temperatures. To study the bonding strength and formaldehyde emission of the bonded plywood, the addition method and amount of MS are systematically investigated. The performance of the UF resins is remarkably improved by the addition of MS around 15% (weight percentage of the total resin) in the second stage. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40202.  相似文献   

10.
The aim of this research was to evaluate the properties of particleboard panels bonded with ionic liquid treated lignin- phenol- glyoxal (LPG) resin. For this purpose, soda bagasse lignin was modified by 1-ethyl-3-methylimidazolium acetate ([Emim][OAc]) ionic liquid and then various contents of virgin and modified lignin (20, 30 and 40 wt% based on weight of phenol), phenol and glyoxal were used for synthesis of LPG resins. After resin synthesis, thermal and physicochemical properties of the synthesized resins such as curing behavior, gelation time, viscosity, solid content and density were measured. Finally, the resins so prepared were used for laboratory particleboard manufacturing. The panels physical (water absorption, thickness swelling) as well as mechanical (MOE, MOR and internal bond strength) properties were measured according to standard methods. The resins tests indicated that modification of lignin with ionic liquid not only can accelerate the gelation time and increase viscosity, density and solid content of LPG resins but also decrease the temperature required for curing the LPG resins. Based on the results of this work, the mechanical strength and dimensional stability of the particleboards bonded with a LPG resin can be improved by using modified lignin. The particleboards prepared with the LPG resin, using either modified or virgin lignin, presented higher water absorption as well as weaker mechanical strength than those prepared with the control PF resin. However, there does not appear to be any statistically significant difference between the some properties of the panels bonded with the control PF resin and those bonded with the LPG resin containing modified lignin.  相似文献   

11.
Effects of resin formulation, catalyst, and curing temperature were studied for particleboard binder‐type urea‐formaldehyde (UF) and 6 ~ 12% melamine‐modified urea‐melamine‐formaldehyde (UMF) resins using the dynamic mechanical analysis method at 125 ~ 160°C. In general, the UF and UMF resins gelled and, after a relatively long low modulus period, rapidly vitrified. The gel times shortened as the catalyst level and resin mix time increased. The cure slope of the vitrification stage decreased as the catalyst mix time increased, perhaps because of the deleterious effects of polymer advancements incurred before curing. For UMF resins, the higher extent of polymerization effected for UF base resin in resin synthesis increased the cure slope of vitrification. The cure times taken to reach the vitrification were longer for UMF resins than UF resins and increased with increased melamine levels. The thermal stability and rigidity of cured UMF resins were higher than those of UF resins and also higher for resins with higher melamine levels, to indicate the possibility of bonding particleboard with improved bond strength and lower formaldehyde emission. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 97: 377–389, 2005  相似文献   

12.
To lower the formaldehyde emission of wood‐based composite panels bonded with urea–formaldehyde (UF) resin adhesive, this study investigated the influence of acrylamide copolymerization of UF resin adhesives to their chemical structure and performance such as formaldehyde emission, adhesion strength, and mechanical properties of plywood. The acrylamide‐copolymerized UF resin adhesives dramatically reduced the formaldehyde emission of plywood. The 13C‐NMR spectra indicated that the acrylamide has been copolymerized by reacting with either methylene glycol remained or methylol group of UF resin, which subsequently contributed in lowering the formaldehyde emission. In addition, an optimum level for the acrylamide for the copolymerization of UF resin adhesives was determined as 1%, when the formaldehyde emission and adhesion strength of plywood were taken into consideration. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

13.
Ammonium pentaborate (APB) was used to modify urea formaldehyde (UF) resins, in which the formaldehyde to urea molar ratio was set at 1.80, 1.50, 1.25, and 1.05. Some specific properties, including gel time, free formaldehyde content in UF, bond strength, and formaldehyde emission levels from plywood were evaluated. The result showed that APB increased the gel time length, but also decreased free formaldehyde content and emission levels, which was reduced mostly by 79.0% and 81.4%, respectively. The result of bond strength indicated that APB was proper to modify high F/U molar ratio of UF resin regardless of the loading level, but a recommended loading level should be considered to relevantly lower the F/U molar ratio of UF. The suggested loading level of APB to UF is 8.0% to 6.0%, 6.0%, and 4.0% to UF resin with F/U molar ratio of 1.8, 1.5, and 1.25 separately.  相似文献   

14.
This study investigated the effect of resin type and content on the dimensional stability and mechanical properties of single-layer composite particleboards made of a mixture of wood particles (70 wt%) and rice husk particles (30 wt%). Two types of resin, urea–formaldehyde (UF) resin and phenol–formaldehyde (PF) resin, were used in the experiments at three different contents which were 8, 10, or 12 wt%. The dimensional stability of the samples was significantly improved by increasing the resin content. When the contents of the UF and PF resins increased from 8 to 12 wt%, the WA values of the samples decreased to18% and 33%, respectively. Similar results were also observed for the TS values. The UF resin bonded samples swelled two times more than the PF resin bonded particleboard. The mechanical properties of the PF resin bonded samples were better than the UF resin bonded samples. When the contents of the UF and PF resins increased from 8% to 12 wt%, the internal bond strength values of the samples increased to 21% and 41%, respectively. The bending strength and modulus of elasticity of the samples were not significantly increased by increasing contents of the UF and PF resins, except for the 12 wt% content.  相似文献   

15.
Particleboards bonded with 6 and 12% melamine‐modified urea‐formaldehyde (UMF) resins were manufactured using two different press temperatures and press times and the mechanical properties, water resistance, and formaldehyde emission (FE) values of boards were measured in comparison to a typical urea‐formaldehyde (UF) resin as control. The formaldehyde/(urea + melamine) (F/(U + M)) mole ratio of UMF resins and F/U mole ratio of UF resins were 1.05, 1.15, and 1.25 that encompass the current industrial values near 1.15. UMF resins exhibited better physical properties, higher water resistance, and lower FE values of boards than UF resin control for all F/(U + M) mole ratios tested. Therefore, addition of melamine at these levels can provide lower FE and maintain the physical properties of boards. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

16.
Melamine can be incorporated in the synthesis of urea‐formaldehyde (UF) resins to improve performance in particleboards (PB), mostly in terms of hydrolysis resistance and formaldehyde emission. In this work, melamine‐fortified UF resins were synthesized using a strong acid process. The best step for melamine addition and the effect of the reaction pH on the resin characteristics and performance were evaluated. Results showed that melamine incorporation is more effective when added on the initial acidic stage. The condensation reaction pH has a significant effect on the synthesis process. A pH below 3.0 results on a very fast reaction that is difficult to control. On the other hand, with pH values above 5.0, the condensation reaction becomes excessively slow. PBs panels produced with resins synthesized with a condensation pH between 4.5 and 4.7 showed good overall performance, both in terms of internal bond strength and formaldehyde emissions. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

17.
Adhesives from Waste Paper by Means of Phenolation   总被引:3,自引:0,他引:3  
Recently the effective use of woody materials has been of interest from the viewpoint of forestry preservation. Newsprint is one of the most abundant of woody materials which are discarded into the environment after use. They would be, however, easily recovered from the market.

The application of phenolation to cellulosic materials is one possibility for the utilization of waste papers. Phenolation is a newly-established method by which lignocellulosic materials are completely converted to substances soluble in some polar organic solvents.

Waste newsprint is subjected to phenolation in the presence of an acidic catalyst. The phenolated product was then methylolated in order to prepare alkaline curable adheisve resins. The chemical characteristics of the phenolated products were studied and the properties of plywood adhesives from them were evaluated. The results indicated that cellulose decomposed and reacted with phenol, producing complicated compound having a phenolic moiety during phenolation and that the compound reacted with formaldehyde, leading to resinous substance which could be thermoset.

The adhesives from the resins of phenolated newsprint provided comparable properties to a commercial phenolic resin in cure behavior, resin viscosity and tensile bond strength. The products of cellulose phenolation, therefore, are expected to be a source of wood adhesives comparable with phenolic resins.  相似文献   

18.
As a part of abating the formaldehyde emission (FE) of urea–formaldehyde (UF) resin, this study was conducted to investigate the effects of formaldehyde to urea (F/U) mole ratio on thermal curing behavior of UF resins and properties of PB bonded with them. UF resins synthesized at different F/U mole ratios (i.e., 1.6, 1.4, 1.2, and 1.0) were used for the manufacture of PB. Thermal curing behavior of these UF resins was characterized using differential scanning calorimetry (DSC). As the F/U mole ratio decreases, the gel time, onset and peak temperatures, and heat of reaction (ΔH) increased, while the activation energy (Ea) and rate constant (k) were decreased. The amount of free formaldehyde of UF resin and FE of PB prepared decreased in parallel with decreasing the F/U mole ratio. The internal bond strength, thickness swelling, and water absorption of PB was slightly deteriorated with decreasing the F/U mole ratio of UF resins used. These results indicated that as the F/U mole ratio decreased, the FE of PB was greatly reduced at the expense of the reactivity of UF resin and slight deterioration of performance of PB prepared. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 1787–1792, 2006  相似文献   

19.
A powdery product was obtained by the reaction of methylolated melamine with alkyl resorcinols to form melamine‐bridged alkyl resorcinols (MARs). The effects of the addition of this powder on the bonding strength and formaldehyde emission of urea–formaldehyde (UF) resins were investigated. Three types of UF resins with a formaldehyde/urea molar ratio of 1.3 synthesized by condensation at pH 1.0 (UF‐1.0), pH 4.5 (UF‐4.5), and pH 5.0 (UF‐5.0) were fabricated. The addition of MAR to UF‐4.5 and UF‐5.0 for bonding hardwood plywood enhanced the bonding strength and reduced formaldehyde emission. For UF‐1.0, the addition of MAR adversely affected the bonding strength. However, the UF‐1.0 resin yielded the lowest formaldehyde emission of all of the UF resins in the study. The effects of the MAR addition were related to the molecular structures of the UF resins. UF‐1.0 contained a large amount of free urea, a considerable number of urons, and a highly methylene‐linked, ring‐structured higher molecular weight fraction and had a smaller number of methylol groups. Therefore, the addition of MAR was considered to cause a shortage of the methylol groups, which in turn, led to incomplete resin curing. In contrast to UF‐1.0, UF‐5.0 contained a smaller amount of free urea and a linearly structured higher molecular weight fraction and had a larger number of methylol groups. In this case, MAR was considered to effectively react with the methylol groups to develop a three‐dimensional crosslinked polymer network to enhance the bonding strength and suppress the generation of free formaldehyde to reduce formaldehyde emission. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

20.
Liquefaction of southern pine wood in phenol in 30–40 : 70–60 weight ratios resulted in homogeneous liquefied materials, which were directly used to synthesize phenol–formaldehyde (PF)‐type resins. The synthesized resins showed good physical and handling properties: low viscosity, stability for storage and transportation, and resin applicable by a common sprayer. Particleboard panels bonded with the synthesized resins showed promising physical properties and significantly lower formaldehyde emission values than those bonded with the urea–formaldehyde resin control. One deficiency observed for the synthesized resins was lower internal bond values, which might be overcome the use of a hot‐stacking procedure. Overall, the process of wood liquefaction with limited amounts of phenol as a solvent was shown to have the potential of providing practical, low‐cost PF‐type resins with very low formaldehyde emission potentials. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号