首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Arsenic contamination of drinking water is a concern in many parts of the world. In the United States, the Environmental Protection Agency recently reduced the maximum contaminant level of arsenic in drinking water from 50 to 10 μ/L (ppb). In Bangladesh the arsenic concentration in drinking water can be as high as hundreds of parts per billion while the maximum contaminant level is 50 ppb. Consequently, there is a great need for new cost-effective methods to remove arsenic from drinking water. Here arsenic removal by coagulation and filtration was investigated using groundwater from a city in southern Colorado in the United States and from Sonargaon in Bangladesh. The results of the bench-scale experiments conducted indicate that coagulation with ferric ions followed by filtration is effective in reducing arsenic concentration in the water tested. However, the actual efficiency of removal is highly dependent on the raw water quality. Further, addition of a polyelectrolyte coagulant aid may lead to improved permeate fluxes during tangential flow microfiltration but has little effect on the residual arsenic concentration.  相似文献   

2.
膜技术在饮用水除砷中的应用研究进展   总被引:2,自引:0,他引:2  
以低压驱动膜的微滤膜(MF)与超滤膜(UF),和高压驱动膜的反渗透膜(RO)与纳滤膜(NF)为主,分析了目前国内外膜技术在饮用水除砷方面的效果、影响因素、浓水处理、膜污染及其清洗等方面的应用研究和进展情况,同时对膜技术优缺点及其在除砷中的应用研究方向与前景做了展望.  相似文献   

3.
In a special report Matthias Kubr of Frost & Sullivan, USA, discusses the implications of the US EPA's decision to reinstate the 10 ppb arsenic limit for drinking water in the USA.  相似文献   

4.
《分离科学与技术》2012,47(15):2380-2390
A laboratory study was conducted to investigate the ability of ferric ion loaded red mud (FRM) for the removal of arsenic species from water. The adsorbent material was characterized by scanning electron microscopy, X-ray diffraction, and Fourier transform infrared spectroscopy. For an initial arsenic concentration lower than 0.3 mg/L, the FRM with a dosage of 1 g/L was able to reduce As(III) at pH 7 below 10 µg/L, the maximum contaminant level (MCL) of arsenic in drinking water set by the World Health Organization. In the case of As(V) removal, FRM was also particularly effective in reducing the initial arsenic concentration value of 1 mg/L at pH 2, below the MCL requirement of arsenic for drinking water. According to kinetic sorption data, the initial stage of adsorptions of As(III) and As(V) onto FRM were mainly governed by the external diffusion mechanism; however, upon saturation of the external adsorbent surface, the arsenic species were eventually adsorbed by intraparticle diffusion mechanism. The present results are promising for using the very inexpensive FRM as a low-cost material that is effective in remediating drinking waters contaminated with low concentrations of arsenic species. We report here the sorption kinetics and adsorption mechanisms of As(III) and As(V) on the FRM that has not been decsribed previously.  相似文献   

5.
对新型阴离子交换树脂MIEX-DOC的除砷性能进行了研究,考察了该树脂除砷容量、对三价砷[As(Ⅲ)]和五价砷[As(Ⅴ)]的去除能力、不同离子和水体pH值对树脂除砷[包括As(Ⅲ)和As(Ⅴ)]效率的影响。结果表明,MIEX-DOC树脂对人工配制高砷水(0.1mg.L-1)的除砷容量约为0.0051mg.mL-1;对As(Ⅲ)和As(Ⅴ)的去除能力相当;常见的共存离子对树脂除砷效率有抑制或促进影响;不同pH值下,MIEX-DOC树脂除砷效率不同,但对0.1mg.L-1的高砷水的除砷效率均达到50%以上。对农村高砷水的实地中试研究表明,当源水砷浓度约为0.1mg.L-1时,出水砷浓度低于0.05mg.L-1,达到《生活饮用水卫生标准》(GB 5749-2006)的农村小型集中式供水和分散式供水水质指标。成本分析结果表明,采用国产MIEX-DOC净水设备的除砷效果与进口设备相当,但除砷成本较低(0.56元.t-1),在我国农村高砷饮用水处理中有一定应用潜力。  相似文献   

6.
Most of the arsenic removal processes are not cost‐effective and/or not efficient in removing As (III). In this research, it was found that Maple wood ash has the potential to adsorb both As (III) and As (V) from contaminated aqueous streams at low concentration levels without any chemical treatment. Static tests showed up to 80% arsenic removal and in various dynamic column tests the arsenic concentration was reduced from 500 ppb to lower than 5ppb. Finally, the ash column was modeled using the surface excess theory. The identified model significantly facilitates practical design of arsenic adsorption system.  相似文献   

7.
饮用水除砷吸附剂的研究进展   总被引:1,自引:0,他引:1  
砷在水体中主要以As(Ⅲ)和As(Ⅴ)的无机酸形式存在,对人体的危害很大,吸附法是国内外研究最广泛的饮用水除砷技术之一.详细说明了饮用水除砷的吸附剂类型,指出:复合材料效率高、费用低,目前应用最为广泛;纳米材料与砷结合后性质稳定,除砷效率最高,是今后的主要发展方向;生物吸附材料以其高吸附率、低成本成为研究的热点.  相似文献   

8.
Groundwater in the area of eastern Croatia contains high concentrations of iron, manganese, ammonia, organic substances and arsenic. The appearance of inorganic arsenic in groundwater is mainly caused by arsenic from natural geological sources. Since the groundwater is the main source of drinking water for the population in this area, almost 200,000 people are daily drinking water with arsenic concentration ranging from 10 to 610 μg/L. The Croatian legislation recently revised the maximum concentration limit (MCL) for arsenic in drinking water to 10 μg/L. The population in the two towns (Osijek and Vinkovci) of this region is supplied with groundwater processed by coagulation-filtration method, but in the other towns and villages water treatment implies only rapid sand filtration. Both methods for water treatment have resulted with higher arsenic concentration than MCL, so the main goal of this study was determination of population exposure to arsenic via drinking water and possible improvement of drinking water quality. Population exposure to arsenic via drinking water is determined with hair analysis, since the hair arsenic concentration is one of three most commonly employed biomarkers used to identify or quantify overall arsenic exposure. During this study the preliminary analyses of hair arsenic concentrations in several towns and villages in eastern Croatia were provided. The positive correlation between heightened arsenic concentration in drinking water and hair arsenic concentration was determined. In order to improve drinking water quality e.g. arsenic removal from contaminated drinking water, different modified adsorbents were used and compared (zeolite–clinoptilolite, manganese greensand and cationic exchange resin). Adsorbents were chemically modified and saturated with Fe(III) ions, while the arsenic solutions were prepared by processed groundwater.  相似文献   

9.
An overview of arsenic removal by pressure-drivenmembrane processes   总被引:2,自引:0,他引:2  
Management of hazardous wastes, such as arsenic, is one of major public concern. Arsenic is a naturally occurring metalloid, which is widely distributed in nature. Recently, arsenic in drinking water attracted attention because some of the drinking water resources contain considerable concentrations of arsenic which cause acute; and chronic symptoms in many countries, especially in Bangladesh, China, Mongolia, and Taiwan. In 2001, the USEPA promulgated a rule lowering the arsenic MCL from 5 μgL−1 to 10 μgL−1. This paper offers an overview of geochemistry, distribution, sources, regulations, acute and chronic symptoms, and applications of membrane technologies in the water treatment research that have already been realized or that are suggested on the basis of bench or lab scale research. These membrane technologies include RO, NF, UF, and MF. Most of theses applications have proven to be reliable in removing arsenic from water. The possible influence of some source water parameters, membrane material, membrane types, membrane processes on arsenic removal efficiency by membrane technologies are also explored. This review paper also offers data relating to regulations of arsenic standard, acute and chronic symptoms that are caused by the exposure of arsenic to explain why water treatments need to use the membrane technology to meet the MCL standard.  相似文献   

10.
The forthcoming introduction of lower standards for arsenic in drinking water requires new technologies for arsenic removal. We report the development of an electrochemical unit for remediating domestic water supplies for homes without municipally treated water. Electrolysis in a two‐anode system provides oxidants to convert As(III) to As(V) in situ, and a sacrificial anode to deliver iron into solution. Conditioning tanks after each electrolysis step ensure completion of the chemical reactions. At the pH of domestic water, As(V) co‐precipitates with Fe(OH)3; subsequent filtration leaves <10 ppb of inorganic arsenic in solution.  相似文献   

11.
对新型阴离子交换树脂MIEX—DOC@的除砷性能进行了研究,考察了该树脂除砷容量、对三价砷[As(m)]和五价砷[As(V)]的去除能力、不同离子和水体pH值对树脂除砷[包括As(Ⅲ)和As(V)]效率的影响。结果表明,MIEX-DOC~树脂对人工配制高砷水(O.1mg·L-1)的除砷容量约为0.0051mg·mL-1;对As(Ⅲ)和As(V)的去除能力相当;常见的共存离子对树脂除砷效率有抑制或促进影响;不同pH值下,MIEX—DOC@树脂除砷效率不同,但对0.1mg·L-1的高砷水的除砷效率均达到50%以上。对农村高砷水的实地中试研究表明,当源水砷浓度约为0.1mg·L-1时,出水砷浓度低于0.05mg·L-1达到《生活饮用水卫生标准》(GB5749—2006)的农村小型集中式供水和分散式供水水质指标。成本分析结果表明,采用国产MIEX-DOC净水设备的除砷效果与进口设备相当,但除砷成本较低(0.56元·t-1),在我国农村高砷饮用水处理中有一定应用潜力。  相似文献   

12.
The removal of arsenic from drinking water by nanofiltration membranes was investigated. Experiments were conducted with tap water to which arsenate and arsenite were added. Two types of nanofiltration membranes, i.e., NF‐90 and NF‐200, have been tested. The effect of various operating conditions, e.g., applied pressure, feed concentration, pH and temperature, were also investigated. The pH and arsenic concentration in the feed and the operating temperature are found to be decisive factors in determining the arsenic concentration remaining in the permeate. The level of removal of As(V) was higher than 98 % for both membranes, but that of As(III) was much lower. It can be concluded that by controlling the operating parameters, source water containing As(V) may be recovered as drinking water to EPA maximum contaminant level quality standards, but that water containing As(III) must undergo a pre‐oxidation treatment before passing through the nanofiltration membrane in order to maintain drinking water quality.  相似文献   

13.
地下水硝酸盐去除技术进展   总被引:5,自引:0,他引:5  
硝酸盐是地下水中最常见的污染因子,给饮水安全带来了较大的威胁,因此世界上很多国家和地区都非常重视地下水硝酸盐脱除技术的研究与开发,取得了很多有价值的研究成果和应用经验。离子交换、反渗透和生物反硝化是研究和应用最广的地下水硝酸盐脱除技术。离子交换法具有投资小、运行管理简便的优点,比较适合中小规模供水需求,但其再生废液的处理或处置非常困难。反渗透法具有脱硝效果好、易于自动控制等优点,可满足各种规模供水需求,但反渗透会产生大量浓缩水,必须妥善处理或处置。在我国华北地区,反渗透浓缩水可用于浇灌农作物,其中较高浓度的硝酸盐是良好的氮肥。至于生物反硝化脱氮技术,虽然具有运行费用低的优点,但现阶段还不能很好地解决残留反硝化碳源和微生物代谢产物的二次污染问题,用此法生产的饮用水安全性还有待进一步评估。  相似文献   

14.
《分离科学与技术》2012,47(8):1058-1065
A highly efficient adsorbent for arsenic removal from water has been prepared by impregnating high surface area iron oxides on glass fibers. Arsenic in water can easily and efficiently be removed by this adsorbent, without the need to pre-oxidize As(III) to As(V). The iron oxides coated on glass fibers (IOCGFs) can remove both arsenic species well below EPA MCL (10 ppb). IOCGFs should have the following four additional advantages: greatly improved contact efficiency; higher adsorption capacity because of high surface area; low cost and easily available adsorbent since the starting reagents (FeCl3 and NH3·H2O) and glass fiber are cheap and readily available; and high adsorption efficiency of As(III) and As(V).  相似文献   

15.
Many of the arsenic removal units operating in remote villages of West Bengal, India now use a hybrid anion exchanger (HAIX) which are essentially spherical anion exchange resin beads containing dispersed nanoparticles of hydrated ferric oxide (HFO). HAIX, now commercially available as ArsenXnp, offers a very high selectivity for sorption of oxyanions of arsenic due to the Donnan membrane effect. The sorption columns used in the field for removal of arsenic are either single column or split-column design. The sorption columns allow flow of atmospheric oxygen, thereby promoting oxidation of dissolved Fe(II) species of arsenic-contaminated raw water to insoluble Fe(III) oxides or HFO particulates. Apart from the usual role played by the sorbents like ArsenXnp or activated alumina towards arsenic removal, HFO particulates also aid in the treatment process. Each unit is attached to a hand-pump driven well and capable of providing arsenic-safe water to three hundred (300) households or approximately one thousand villagers. No chemical addition, pH adjustment or electricity is required to run these units. On average, every unit runs for more than 20,000 bed volumes before a breakthrough of 50 μg/L of arsenic, the maximum contaminant level in drinking water in India, is reached. In addition to arsenic removal, significant iron removal is also achieved throughout the run. Upon exhaustion, the media is withdrawn and taken to a central regeneration facility where 2% NaCl and 2% NaOH solution are used for regeneration. Subsequently, the regenerated resin is reloaded into the well-head sorption column. Following regeneration, the spent solutions, containing high arsenic concentration, are transformed into solids residuals and contained in a way to avoid any significant arsenic leaching. Laboratory investigations confirmed that the regenerated ArsenXnp is amenable to reuse for multiple cycles without any significant loss in capacity.  相似文献   

16.
《分离科学与技术》2012,47(6):1005-1016
Arsenic contamination in drinking water resources is a global problem; therefore, its removal from drinking water has become an important sustainable matter. The adsorption process can be more cost-effective and applicable, especially, if the absorbents used in the process are low-cost natural geo-materials. Beidellite, zeolite, and sepiolite are inexpensive and natural minerals available locally, modified, and used as adsorbents for the removal of arsenic ions from aqueous solutions in batch experiments. The kinetics of the adsorption process was separately tested for the pseudo-first order and pseudo-second order reactions and intra-particle diffusion models. The rate constants of adsorption for all these kinetic models were calculated. The comparison among the models showed that the pseudo second-order model best described the adsorption kinetics. Applied to the experimental equilibrium, at different temperatures were the Langmuir and Freundlich isotherm models. The Langmuir isotherm was used to calculate the adsorption capacities (Q°) of minerals for arsenic ions. The adsorption capacities of these three modified minerals, at different temperatures, ranged from 476 to 841 µg/g. Thermodynamic studies showed that the arsenic uptake reactions by minerals were endothermic and spontaneous in nature. Bottled spring water containing arsenic, sold in markets, was used to conduct the arsenic adsorption study beidellite, zeolite, and sepiolite, minerals which efficiently removed the arsenate ions from the bottled drinking water. The use of modified beidellite, zeolite, and sepiolite as adsorbents in the arsenic ion removal processes is possible, based on the optimum parameters found.  相似文献   

17.
常新强  周明  沈权 《净水技术》2013,32(3):19-22
饮用水中砷超标会严重危害人的身体健康。该文利用MnO:对麦饭石进行改性,制备了一种高效的吸附剂;同时研究了在不同pH值、接触时间、改性麦饭石的投加量及砷的初始浓度条件下,改性麦饭石对饮用水中As(V)的去除。研究结果表明:在以上不同条件下,改性麦饭石对水中As(V)均有一定的去除效果。当pH值为6、接触时间为60min、改性麦饭石投加量为1000mg/L、水中As(V)的初始浓度为100μg/L时,改性麦饭石对饮用水中的As(V)的去除率为91%,此时水中砷的含量低于国家生活饮用水卫生标准(10μg/L)。  相似文献   

18.
This study presents the removal of trace level arsenic to meet drinking water standards using an iron oxide-multi-walled carbon nanotube (Fe-MWCNT) hybrid as a sorbent. The synthesis was facilitated by the high degree of nanotube functionalization using a microwave assisted process, and a controlled assembly of iron oxide was possible where the MWCNT served as an effective support for the oxide. In the final product, 11 % of the carbon atoms were attached to Fe. The Fe-MWCNT was effective in arsenic removal to below the drinking water standard levels of 10 μg L(-1). The absorption capacity of the composite was 1723 μg g(-1) and 189 μg g(-1) for As(III) and As(V) respectively. The adsorption of As(V) on Fe-MWCNT was faster than that of As(III). The pseudo-second order rate equation was found to effectively describe the kinetics of arsenic adsorption. The adsorption isotherms for As(III) and As(V) fitted both the Langmuir and Freundlich models.  相似文献   

19.
The present study has investigated the performance of electrocoagulation, to produce drinking water, using aluminum electrodes to remove nickel (Ni) and chromium (Cr) from two different water well samples from the north of Italy. Different experimental parameters, such as stirring and distance between the electrodes and current density, have been examined for both water samples. The series of experiments carried out on these two water samples has shown that the removal process of Ni is faster than that of Cr. In the case of water poisoned by Ni, a final concentration of 5 ppb was achieved starting from 41 ppb, while the Cr case showed a final concentration of 10 ppb compared to an initial 20 ppb. The electrocoagulation treatment presented in this study has shown very promising results and a high potential to remove very low amounts of heavy metals from water for drinking water production purposes.  相似文献   

20.
饮用水除砷技术研究新进展   总被引:5,自引:1,他引:5  
重点介绍了近年来各种除砷新技术的研究进展,内容包括:强化混凝、吸附、离子交换、膜法、预氧化除砷技术。评价了各除砷技术的优缺点与适用范围,并认为饮用水除砷技术的发展将呈现出以下特点:As(Ⅲ)和As(V)同步去除技术的开发;易于取得或制备、生物化学稳定性高、吸附容量大、选择性高、再生能力强的新型除砷吸附剂的开发;多种除砷技术联合,多重去除机理协同的除砷流程的开发;低能耗、低成本除砷技术的开发;生物除砷技术的开发。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号