首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
(1− x )(Na0.5K0.5)NbO3–(Bi0.5K0.5)TiO3 solid solution ceramics were successfully fabricated, exhibiting a continuous phase transition with changing x at room temperature from orthorhombic, to tetragonal, to cubic, and finally to tetragonal symmetries. A morphotropic phase boundary (MPB) between orthorhombic and tetragonal ferroelectric phases was found at 2–3 mol% (Bi0.5K0.5)TiO3 (BKT), which brings about enhanced piezoelectric and electromechanical properties of piezoelectric constant d 33=192 pC/N and planar electromechanical coupling coefficient k p=45%. The MPB composition has a Curie temperature of 370°–380°C, comparable with that of the widely used PZT materials. These results demonstrate that this system is a promising lead-free piezoelectric candidate material.  相似文献   

2.
Lead-free potassium sodium niobate-based piezoelectric ceramics (1− x )(Na0.5K0.5)NbO3– x BiScO3 (KNN–BS) ( x =0∼0.05) have been prepared by an ordinary sintering process. Single perovskite phase of KNN–BS exhibits an orthorhombic symmetry at x <0.015 and pseudocubic symmetry at x >0.02, separating by a MPB at 0.015≤ x ≤0.02. Piezoelectric and ferroelectric properties are significantly enhanced in the MPB, which are as follows: piezoelectric constant d 33=203 pC/N, planar coupling coefficient k p=0.36, remnant polarization P r=24.4 μC/cm2. These solid solution ceramics look promising as a potential lead-free candidate materials.  相似文献   

3.
Lead-free piezoelectric (K0.5Na0.5)NbO3– x wt% Bi2O3 ceramics have been synthesized by an ordinary sintering technique. The addition of Bi2O3 increases the melting point of the system and improves the sintering temperature of (K0.5Na0.5)NbO3 ceramics. All samples show a pure perovskite phase with a typical orthorhombic symmetry when the Bi2O3 content <0.7 wt%. The phase transition temperature of orthorhombic–tetragonal ( T O − T ) and tetragonal–cubic ( T C) slightly decreased when a small amount of Bi2O3 was added. The remnant polarization P r increased and the coercive field E c decreased with increasing addition of Bi2O3. The piezoelectric properties of (K0.5Na0.5)NbO3 ceramics increased when a small amount of Bi2O3 was added. The optimum piezoelectric properties are d 33=140 pC/N, k p=0.46, Q m=167, and T C=410°C for (K0.5Na0.5)NbO3–0.5 wt% Bi2O3 ceramics.  相似文献   

4.
The 0.95(Na0.5K0.5)NbO3–0.05SrTiO3 (0.95NKN–0.05ST) ceramics formed in this study had a porous microstructure with small grains and low piezoelectric properties due to their low density. However, when a small amount of Na2O was intentionally subtracted from the 0.95NKN–0.05ST ceramics, a liquid phase was formed, which led to increased density and grain size. Piezoelectric properties were also improved for the Na2O-subtracted 0.95NKN–0.05ST ceramics. The increased density and grain size were responsible for the enhancement of the piezoelectric properties. In particular, the 0.95(Na0.49K0.5)NbO2.995–0.05ST ceramics showed high piezoelectric properties of d 33=220, k p=0.4, Q m=72, and ɛ3To=1447, thereby demonstrating their promising potential as a candidate material for application to lead-free piezoelectric ceramics.  相似文献   

5.
The sintering temperature of 0.95(Na0.5K0.5)NbO3–0.05BaTiO3 (NKN–BT) ceramics needs to be decreased below 1000°C to prevent Na2O evaporation, which can cause difficulties in poling and may eventually degrade their piezoelectric properties. NKN–BT ceramics containing CuO were well sintered at 950°C with grain growth. Poling was easy for all specimens. Densification and grain growth were explained by the formation of a liquid phase. The addition of CuO improved the piezoelectric properties by increasing the grain size and density. High piezoelectric properties of d 33=230 pC/N, k p=37%, and ɛ3T0=1150 were obtained from the specimen containing 1.0 mol% of CuO synthesized by the conventional solid-state method.  相似文献   

6.
(1− x )(Na0.5K0.5)NbO3– x LiNbO3 [(1− x )NKN– x LN] ceramics were produced by the conventional solid-state sintering method, and their microstructure and piezoelectric properties were investigated. The formation of the liquid phase and K6Li4Nb10O30 second phase that were observed in the (1− x )NKN– x LN ceramics was explained by the evaporation of Na2O during the sintering. A morphotropic phase boundary (MPB) was observed in the specimens with 0.05< x <0.08. Promising piezoelectric properties were obtained for the specimens with x =0.07. Therefore, the piezoelectric properties of this 0.93NKN–0.07LN ceramic were further investigated and were found to be influenced by their relative density and grain size. In particular, grain size considerably affected the d 33 value. Two-step sintering was conducted at different temperatures to increase the grain size. Piezoelectric properties of d 33=240 (pC/N) and k p=0.35 were obtained for the 0.93NKN–0.07LN ceramics sintered at 1030°C and subsequently annealed at 1050°C.  相似文献   

7.
Mn-doped 0.98K0.5Na0.5NbO3–0.02BiScO3 (0.98KNN–0.02BS) lead-free piezoelectric ceramics have been prepared by a conventional sintering technique and the effects of Mn doping on the phase structure and piezoelectric properties of the ceramics have been studied. Our results reveal that a small amount of Mn can improve the densification of the ceramics effectively. Because of the high densification, fine grain, and Mn doping effects, the piezoelectric and dielectric properties of the ceramics are improved considerably. Very good piezoelectric and dielectric properties of d 33=288 pC/N, k p=0.46, ɛr=1591, and T C=328°C were obtained for the 0.98KNN–0.02BS ceramics doped with 0.8 mol% Mn. Therefore, the 0.98KNN–0.02BS ceramics containing a small amount of Mn are a good candidate material for lead-free piezoelectric ceramics.  相似文献   

8.
(1− x )(K0.48Na0.52)(Nb0.95Ta0.05)O3– x LiSbO3 [(1− x )KNNT− x LS] lead-free piezoelectric ceramics were prepared by the conventional solid-state sintering method. A morphotropic phase boundary (MPB) between orthorhombic and tetragonal phases was identified in the composition range of 0.03< x <0.05. The ceramics near the MPB exhibit a strong compositional dependence and enhanced electrical properties. The (1− x )KNNT– x LS ( x =0.04) ceramics exhibit good electrical properties ( d 33=250 pC/N, k p=45.1%, k t =46.3%, T c=348°C, T o − t =74°C, P r=25.9 μC/cm2, E c=10.7 kV/cm, ɛr∼1352, tan δ∼3%). These results show that (1− x )KNNT– x LS ceramic is a promising lead-free piezoelectric material.  相似文献   

9.
[(K x Na1− x )0.95Li0.05](Nb0.95Ta0.05)O3 (K x NLNT) ( x= 0.40–0.60) lead-free piezoelectric ceramics were prepared by conventional solid-state sintering. The effects of K/Na ratio on the dielectric, piezoelectric, and ferroelectric properties of the K x NLNT ceramics were studied. The experimental results show that the electrical properties strongly depend on the K/Na ratio in the K x NLNT ceramics. The K x NLNT ( x =0.42) ceramics exhibit enhanced properties ( d 33∼242 pC/N, k p∼45.7%, k t∼47%, T c∼432°C, T o−t =48°C, ɛr∼1040, tanδ∼2.0%, P r∼26.4 μC/cm2, E c∼10.3 kV/cm). Enhanced electrical properties of the K x NLNT ( x =0.42) ceramics could be attributed to the polymorphic phase transition near room temperature. These results show that the K x NLNT ( x =0.42) ceramic is a promising lead-free piezoelectric material.  相似文献   

10.
[(K0.50Na0.50)0.95− x Li0.05Ag x ](Nb0.95Ta0.05)O3 (KNLNANT- x ) lead-free piezoelectric ceramics were prepared by normal sintering. Effects of the Ag content on the microstructure and electrical properties of KNLNANT- x ceramics were systematically investigated. It is found that the ceramics with x =0.03 exhibit relatively good electrical properties along with high Curie temperature: ( d 33∼252 pC/N, T c∼438°C, k p∼45.4%, P r∼30.1 μC/cm2, E c∼13.8 kV/cm, ɛr∼1030, and tan δ∼2.6%). The related mechanism for enhanced electrical properties of the ceramics was also discussed. These results show that KNLNANT-0.03 ceramic is a promising candidate material for high temperature lead-free piezoelectric ceramics.  相似文献   

11.
Lead-free potassium sodium niobate-based piezoelectric ceramics (1− y )(Na0.5−0.5 x K0.5−0.5 x Li x )NbO3− y BiScO3 (  y =0.01, x= 0–0.06) have been prepared by an ordinary sintering process. The XRD analysis showed that the structure changes from orthorhombic to tetragonal with the increase of x (at y =0.01, abbreviated as KNNBSL100 x ). At room temperature, the polymorphic phase transition from the orthorhombic to the tetragonal phase was identified at approximately 0.02≤ x ≤0.04. The piezoelectric and ferroelectric properties were significantly enhanced. The temperature dependences of the relative permittivity revealed that the Curie temperature was increased with the addition of LiNbO3. These solid solution ceramics are promising as potential lead-free candidate materials.  相似文献   

12.
When a small amount of CuO was added to (Na0.5K0.5)NbO3 (NKN) ceramics sintered at 960°C for 2 h, a dense microstructure with increased grains was developed, probably due to liquid-phase sintering. The Curie temperature slightly increased when CuO exceeded 1.5 mol%. The Cu2+ ion was considered to have replaced the Nb5+ ion and acted as a hardener, which increased the E c and Q m values of the NKN ceramics. High piezoelectric properties of k p=0.37, Q m=844, and ɛ3 T 0=229 were obtained from the specimen containing 1.5 mol% of CuO sintered at 960°C for 2 h.  相似文献   

13.
(Na0.5K0.5)NbO3 (NKN) ceramic with 1.5 mol% CuO added (NKNC) was well sintered even at a low temperature of 900°C with the addition of ZnO. Most of the ZnO reacted with the CuO and formed the liquid phase that assisted the densification of the specimens at 900°C. A few Zn2+ ions entered the matrix of the specimens and increased the coercive field ( E c) and Q m values of the specimens. High-piezoelectric properties of k p=0.37, Q m=755, and ɛ3 T0=327 were obtained from the NKNC ceramics containing 1.0 mol% ZnO sintered at 900°C for 2 h.  相似文献   

14.
A new type (1− x )(K0.485Na0.485Li0.03)NbO3– x Pb(Zr0.53Ti0.47)O3 piezoelectric ceramics was fabricated by conventional ceramics sintering technique. Their microstructure and electrical properties of the ceramics were also studied. X-ray diffraction and scanning electron microscopy patterns indicate that all ceramics samples exhibit a pure perovskite and highly dense structure, and the coexistence of the tetragonal and orthorhombic phases is formed; The ceramic with x =0.75 exhibits the following excellent properties: d 33=363 pC/N, k p=63%, Q m=142, ɛr=1590, tan δ=1.70%, P r=28.6 μC/cm2, E c=0.89 kV/mm, T c=295°C. These results indicate that the ceramic is a promising candidate for piezoelectric ceramics in practical applications.  相似文献   

15.
Lead-free piezoelectric ceramics (Na1− x K x )(Nb1− y Sb y )O3+ z mol% MnO2 have been prepared by a conventional solid-state sintering technique. Our results reveal that Sb5+ diffuses into the K0.5Na0.5NbO3 lattices to form a solid solution with a single-phase orthorhombic perovskite structure. The partial substitution of Sb5+ for B-site ion Nb5+ decreases the paraelectric cubic-ferroelectric tetragonal phase transition ( T c) and the ferroelectric tetragonal-ferroelectric orthorhombic phase transition ( T O–F), and retains strong ferroelectricity. A small amount of MnO2 is enough to improve the densification of the ceramics. The co-effects of MnO2 doping and Sb substitution lead to significant improvements in ferroelectric and piezoelectric properties. The ceramics with x =0.45–0.525, y =0.06–0.08, and z =0.5–1 exhibit excellent ferroelectric and piezoelectric properties: d 33=163–204 pC/N, k P=0.47–0.51, k t=0.46–0.52, ɛ=640–1053, tan δ=1.3–3.0%, P r=18.1–22.6 μC/cm2, E c=0.72–0.98 kV/mm, and T C=269°–314°C.  相似文献   

16.
Microstructure characteristics, phase transition, and electrical properties of (Na0.535K0.485)0.926Li0.074(Nb0.942Ta0.058)O3 (NKN-LT) lead-free piezoelectric ceramics prepared by normal sintering are investigated with an emphasis on the influence of sintering temperature. Some abnormal coarse grains of 20–30 μm in diameter are formed in a matrix consisting of about 2 μm fine grains when the sintering temperature was relatively low (980°C). However, only normally grown grains were observed when the sintering temperature was increased to 1020°C. On the other hand, orthorhombic and tetragonal phases coexisted in the ceramics sintered at 980°–1000°C, whereas the tetragonal phase becomes dominant when sintered above 1020°C. For the ceramics sintered at 1000°C, the piezoelectric constant d 33 is enhanced to 276 pC/N, which is a high value for the Li- and Ta-modified (Na,K)NbO3 ceramics system. The other piezoelectric and ferroelectric properties are as follows: planar electromechanical coupling factor k p=46.2%, thickness electromechanical coupling factor k t=36%, mechanical quality factor Q m=18, remnant polarization P r=21.1 μC/cm2, and coercive field E c=1.85 kV/mm.  相似文献   

17.
La-doped 0.3Pb(Zn1/3Nb2/3)O3–0.7Pb(Zr x Ti1− x )O3 ( x =0.5–0.53) piezoelectric ceramics with pure perovskite phase were synthesized by a two-step hot-pressing route. The piezoelectric properties of various compositions near the morphotropic phase boundary (MPB) were systematically investigated. Not only was the exact MPB of this system determined via X-ray diffractometry analysis, but also the peak of piezoelectric properties was found near the MPB. The optimum piezoelectric properties of this series were observed in the specimen with Zr/Ti=51/49. The piezoelectric coefficient ( d 33) and electromechanical coupling factor ( k p) were 845 pC/N and 0.70, respectively, which have not been reported in this system so far. Large permittivity (ɛr=4088) and permittivity maximum (ɛm=29 500) were also obtained for the poled specimens. The temperatures ( T max) of the permittivity maxima ranged from 206° to 213°C with various Zr/Ti ratios.  相似文献   

18.
As a candidate for lead-free piezoelectric materials, Li2O-excess 0.95(Na0.5K0.5)NbO3–0.05LiTaO3 (NKN–5LT) ceramics were developed by a conventional sintering process. The sintering temperature was lowered by adding Li2O as a sintering aid. Abnormal grain growth in NKN–5LT ceramics was observed with varying Li2O content. This grain-growth behavior was explained in terms of interface reaction-controlled nucleation and growth. In the 1 mol% Li2O excess NKN–5LT samples sintered at 1000°C for 4 h in air, the electromechanical coupling factor and the piezoelectric constant of NKN–5LT ceramics were found to reach the highest values of 0.37 and 250 pC/N, respectively.  相似文献   

19.
Ceramics with the chemical compositions of Pb1− x La2 x /3(Nb0.95Ti0.0625)2O6 (0≤ x ≤0.060) (PLTN) were prepared by the conventional solid-state reaction method. X-ray diffraction analysis indicated that Ti and La doping not only decreased the rhombohedral–tetragonal phase transformation temperature, but also stabilized the orthorhombic phase of PLTN ceramics. All ceramics sintered at 1190°–1250°C had shown the pure orthorhombic ferroelectric phase. La doping suppresses grain growth and inhibits the formation of pores and cracks, resulting in an increase in relative density up to 97%. The amount of La doping to PLTN ceramics obviously affect ceramics' piezoelectric constant ( d 33) and dielectric loss (tanδ). The sample with x =0.015 possesses high Curie temperature ( T c=560°C), low dielectric loss (tanδ=0.0054), and excellent piezoelectric constant ( d 33=92 pC/N), presenting a high potential to be used in high-temperature applications as piezoelectric transducers.  相似文献   

20.
The objective of this work was to lower the sintering temperature of K0.5Na0.5NbO3 (KNN) without reducing its piezoelectric properties. The KNN was sintered using 0.5, 1, 2, and 4 mass% of (K, Na)-germanate. The influence of the novel sintering aid, based on alkaline germanate with a melting point near 700°C, on the sintering, density, and piezoelectric properties of KNN is presented. The alkaline-germanate-modified KNN ceramics reach up to 96% of theoretical density at sintering temperatures as low as 1000°C, which is approximately 100°C less than the sintering temperature of pure KNN. The relative dielectric permittivity (ɛ/ɛ0) and losses (tanδ), measured at 10 kHz, the piezo d 33 coefficient, the electromechanical coupling and mechanical quality factors ( k p, k t, Q m) of KNN modified with 1 mass% of alkaline germanate are 397, 0.02, 120 pC/N, 0.40, 0.44, and 77, respectively. These values are comparable to the best values obtained for KNN ceramics sintered above 1100°C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号