首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A novel epoxy resin modifier, phosphorus‐containing epoxide siloxane (DPS) with cyclic phosphorus groups in the Si O network, was prepared from the reaction of 9,10‐dihydro‐9‐oxa‐10‐phosphaphenanthrene‐10‐oxide (DOPO) with polyhedral‐oligomeric siloxanes, which was synthesized by the sol–gel reaction of 3‐glycidoxypropyltrimethoxysilane. DPS was confirmed by Fourier transform infrared and 29Si NMR measurement, and then was employed to modify epoxy resin at various ratios, with 4,4‐diaminodiphenyl‐methane as a curing agent. In order to make a comparison, DOPO‐containing epoxy resins were also cured under the same conditions. The resulting organic–inorganic hybrid epoxy resins modified with DPS exhibited a high glass transition temperature (Tg), a good thermal stability, and a high limited oxygen index. In addition, the tensile strength of cured products was also rather desirable. POLYM. COMPOS., 2010. © 2009 Society of Plastics Engineers  相似文献   

2.
Optically clear silicone/epoxy hybrid resins were synthesized. The silicone resin (SiR) carrying Si? H, Si? CH?CH2 and Si? OH groups was prepared by hydrolytic condensation. The blends of SiR and diglycidyl ether of hydrogenated bisphenol A (DGEHBA) were cured through platinum‐catalyzed hydrosilylation and aluminium acetylacetonate‐catalyzed polymerization. The curing process was studied using differential scanning calorimetry and rigid‐body pendulum rheometry. It was found that the ratio of SiR to DGEHBA plays a major role in the curing process. The Si? OH groups of SiR assist polymerization of DGEHBA, and react with the epoxy resin to prevent phase separation. The cured hybrid resins are single‐phase materials with a transmittance of about 87% at 400 nm for a thickness of 3 mm using air as reference. UV resistance and thermal stability of the hybrids are largely dependent on the composition. The adhesive strength of the SiRs can be significantly improved by a small fraction of DGEHBA, with a marginal influence on UV resistance. However, increasing the epoxy proportion has a marked negative influence on thermal stability. Compounding stabilizers, especially thermal stabilizers, are essential, in particular for high epoxy content, if the hybrids are to be used for high‐brightness light‐emitting diode packaging. Copyright © 2011 Society of Chemical Industry  相似文献   

3.
Oligo-fluorosiloxane (DFOS) and epoxy-containing oligo-fluorosiloxane (DFEHOS) were synthesized by the hydrolytic condensation reaction to modify 3, 4-epoxycyclohexylmethyl-3, 4-epoxycyclohexanecarboxylate (ERL-4221) for potential application in LED packaging. The chemical structures of DFOS and DFEHOS were characterized by Fourier transform infrared (FT-IR), 29Si nuclear magnetic resonance (29Si NMR), and gel permeation chromatography (GPC). The thermal behavior, mechanical properties, morphologies of impact fracture surfaces, surface wettability and absorbency of the modified epoxy resins were examined by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), tensile and impact testing, scanning electron microscopy (SEM), and contact angle measurement, respectively. The experimental results indicated that the contact angles, surface energies and water absorption ratios of the modified epoxy resins were effectively improved by the introduction of oligo-fluorosiloxanes. Compared to neat epoxy resin, the thermal stabilities of DFEHOS-modified epoxy resins were basically kept, and that of DFOS-modified epoxy resins were slightly depressed with the increasing content of modifiers. As the additive quantity of modifiers was about 5pph to 15pph relative to ERL-4221, good thermal stability, fracture toughness and surface hydrophobicity of the modified epoxy resin was exhibited, and the cured DFEHOS-10 that embraced the relatively optimum comprehensive property was possible for LED encapsulation. Moreover, the reactable groups formed during hydrolytic condensation in DFOS and DFEHOS made good compatibilities between the modifiers and the epoxy matrix.  相似文献   

4.
Dual functional epoxy resins were synthesized by solution polycondensation of 2,6‐bis(4‐hydroxy‐3‐methoxy benzylidene)cyclohexanone and 2,5‐bis(4‐hydroxy‐3‐methoxy benzylidene)cyclopentanone with epichlorohydrin. The synthesized epoxy resins were characterized systematically for their structure by UV, Fourier transform infrared (FTIR), 1H NMR, and 13C NMR spectroscopic techniques. Thermal characterization of synthesized epoxy resins was carried out by thermogravimetric analysis, and differential scanning calorimetry (DSC) under nitrogen atmosphere. The self extinguishing property of synthesized oligomers was studied by determining limiting oxygen index (LOI) values using Van Krevelen's equation. X‐ray analysis showed that the epoxy resins containing cyclopentanone have higher degree of crystallinity. The photoreactive property of the synthesized epoxy resins in solution and film states was investigated by UV–Vis spectroscopy. The photocross‐linking proceeds through the dimerization of olefinic chromophore present in the main chain of the oligomer via 2π + 2π cycloaddition reaction. The influence of photoacid generator on the rate of photocross‐linking of epoxy resin was studied by FTIR. UV irradiation of the epoxy resin in presence of photoacid generator produces aromatic sulfonium cation radicals and aromatic radicals which initiate the cationic ring‐opening polymerization of oxirane ring. The photoreactivity studies of the oligomers by FTIR and DSC indicated the presence of dual functionality in the synthesized epoxy resins. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

5.
UV‐curing processes are used in industrial applications because of their advantages such as high‐speed applications and solvent‐free formulations at ambient temperature. UV‐curable epoxy acrylate resins containing arylene ether sulfone linkages (EAAES) were synthesized through the condensation of bis(4‐chlorophenyl)sulphone and bisphenol‐A, followed by end‐caping of epichlorohydrin and subsequently acrylic acid. UV‐cured coatings were formulated with epoxy acrylates, reactive diluents such as pentaerythritol tri‐acrylate and pentaerythritol dia‐crylate and photoinitiator. Fourier transfer infrared, 1H NMR, and thermal gravimetrical analysis were employed to investigate the structures and thermal properties of the EAs films. The introduction of EAAES into epoxy acrylate substantially improves its thermal properties and thermo‐oxidative stability at high temperatures. In addition, the acrylate containing arylene ether sulfone linkages can also improve pencil hardness and chemical and solvent resistance of the epoxy acrylate. The obtained UV‐curable epoxy acrylate containing arylene ether sulfone linkages is promising as oligomer for UV‐curable coatings, inks, and adhesives in some high‐tech regions. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 41067.  相似文献   

6.
Guoyuan Pan  Chen Zhang  Xiaoping Yang 《Polymer》2007,48(13):3686-3693
A series of novel novolac epoxy resins containing naphthalene moiety with different molecular weights were synthesized via condensation of bisphenol A and 1-naphthaldehyde, followed by epoxidation with epichlorohydrin. The chemical structure of the naphthalene epoxy thus obtained was characterized using FTIR, 1H NMR spectra and GPC analyses. The naphthalene epoxy was cured with 4,4′-diaminodiphenyl sulfone (DDS) and the cured products were characterized with thermogravimetric analysis, dynamic mechanical analysis, and X-ray diffraction. Compared with the diglycidyl ether of bisphenol A (DGEBA), the cured naphthalene epoxy resin showed remarkably higher glass transition temperatures (Tgs), enhanced thermal stability and better moisture resistance. When the molar ratio of 1-naphthaldehyde to bisphenol A was 0.67, the optimal thermal resistance was observed.  相似文献   

7.
Cationic UV‐curable methacrylate copolymers consisting of glycidyl methacrylate, iso‐butyl methacrylate, and 2,2,3,4,4,4‐hexafluorobutyl methacrylate were synthesized, and their structures were characterized by FTIR, 1H NMR, and 13C NMR. A series of UV‐cured composite films based on the synthesized copolymers and an alicyclic epoxy resin, 3,4‐epoxycyclohexylmethyl‐3,4‐epoxycyclohexanecarboxylate (CE) were obtained through photopolymerization. Their surface contact angle, chemical ability, gloss, light transmittance, thermal behavior, micromorphology, and shrinkage were investigated. Results indicated that these cured resins showed excellent gloss and visible light transmittance; after the combination of the copolymers and CE, and in the presence of fluorine in the curing systems they exhibited relatively fine water resistance, chemical, and thermal stability. It was observed that these copolymers could decrease the degree of the volume shrinkage to CE. The UV‐curable materials may have promising applications in optical fiber coatings, flip chip and Organic Light‐Emitting Diode (OLED) packing. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

8.
BACKGROUND: Although rosin acid derivatives have received attention in polymer synthesis in recent years, to the best of our knowledge, they have rarely been employed as epoxy curing agents. The objective of the study reported here was to synthesize rosin‐based flexible anhydride‐type curing agents and demonstrate that the flexibility of a cured epoxy resin can be manipulated by selection of rosin‐based anhydride‐type curing agents with appropriate molecular rigidity/flexibility. RESULTS: Maleopimarate‐terminated low molecular weight polycaprolactones (PCLs) were synthesized and studied as anhydride‐type curing agents for epoxy curing. The chemical structures of the products were confirmed using 1H NMR spectroscopy and Fourier transform infrared spectroscopy. Mechanical and thermal properties of the cured epoxy resins were studied. The results indicate that both the epoxy/anhydride equivalent ratio and the molecular weight of PCL diol play important roles in the properties of cured resins. CONCLUSION: Rosin‐based anhydride‐terminated polyesters could be used as bio‐based epoxy curing agents. A broad spectrum of mechanical and thermal properties of the cured epoxy resins can be obtained by varying the molecular length of the polyester segment and the epoxy/curing agent ratio. Copyright © 2009 Society of Chemical Industry  相似文献   

9.
Novel epoxy resin modifiers, DOPO–TMDS and DOPO–DMDP were synthesized by addition reaction of divinylsiloxane with 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO). Halogen-free flame retardant epoxy resins were obtained through modification of o-cresol novolac epoxy resin cured by phenol novolac resin using DOPO–TMDS and DOPO–DMDP which were characterized by 1H NMR, 13C NMR, 31P NMR and FT-IR measurements. Effects of the phosphorus-containing siloxanes on thermal stabilities, mechanical properties and flame retardant properties of the epoxy resins were investigated. The cured epoxy resins exhibited better mechanical properties and greatly improved flame retardant properties due to the presence of phosphorus-containing siloxanes. The cured epoxy resins with phosphorus loading of 2.0 wt% showed LOI values of 32–33 and achieved UL94V-0 ratings.  相似文献   

10.
Bisphenol derived from reaction of phenol with benzaldehyde was prepared in the presence of sulfuric acid as catalyst. Bisphenol novolacs were synthesized in both melting and solution processes using p-formaldehyde and formalin solution in the presence of oxalic acid catalyst. 1H NMR analysis shows a high methylene bridge contents using the novolacs synthesized in a melting process. The bisphenol novolac epoxy resin was prepared by reaction with epichlorohydrine in the presence of sodium hydroxide as a catalyst. The prepared novolac epoxy resins were cured with 1,2-amino ethyl piperazine (AEP) as a curing agent. The cured resins were evaluated as organic coating for steel. The mechanical properties of the cured epoxy resins were evaluated by measuring both impact resistance and hardness. The chemical resistances of the cured resins were evaluated through salt spray resistance, hot water immersion, solvent resistance, acid and alkali resistance measurements. The data indicate that the cured epoxy resins have excellent chemical resistances as organic coatings among other cured resins.  相似文献   

11.
A photosensitive epoxy resin was synthesized from bis(4‐hydroxy ‐3‐methoxy benzylidene) acetone and epichlorohydrin using solution polycondensation method. The prepared epoxy resin was characterized by UV, IR, 1H NMR, and 13C NMR spectroscopy. The thermal stability of the epoxy resin was assessed by thermogravimetric analysis. The glass transition temperature of the polymer was determined by differential scanning calorimetry. The photocrosslinking property and photopolymerizing ability of the epoxy resin were studied in film and solution state using UV spectroscopy. The effect of photo acid generator and sensitizer on photosensitivity of the resin was also investigated. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

12.
A simple imide compound, 4‐amino‐phthalimide (APH), was synthesized as a curing agent for epoxy resin. APH was prepared from the hydration of 4‐nitro‐phthalimide, which was prepared from the nitration of phthalimide. The chemical structure of APH was verified by IR and 1H‐NMR spectra. The thermal properties and dielectric constant (ε) of a phosphorus‐containing novolac epoxy resin cured by APH were determined and compared with those of epoxy resins cured by either 4,4′‐diamino diphenyl methane (DDM) or 4,4′‐diamino diphenyl sulfone (DDS). The results indicate that the epoxy resin cured by APH showed better thermal stability and a lower ε than the polymer cured by either DDM or DDS. This was due to the introduction of the imide group of APH into the polymer structure. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

13.
Bisphenol A novolacs were synthesized in both melting and solution processes using p‐formaldehyde and formalin solution in presence of oxalic acid catalyst, respectively. Hydrogen nuclear magnetic resonance, 1H NMR, investigations show a high methylene bridge contents in the novolacs synthesized in a melting process. These novolacs were analyzed by gel permation chromatography (GPC) and fourier transform infrared spectroscopy (FTIR). The bisphenol A novolac was cured with 1‐(2‐amino ethyl) piprazine (AEP) as a curing agent for epoxy resins. The cured resins were evaluated as organic coating for steel. The mechanical properties of the cured epoxy resins were evaluated. The chemical resistances of the cured resins were evaluated through salt spray resistance, hot water, solvents, acid and alkali resistance measurements. The data indicate that the cured epoxy resins have excellent chemical resistances as organic coatings among other cured resins. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

14.
A series of trifunctional epoxy resins were successfully synthesized by the condensation of 2,6-dimethylol-4-methylphenol with phenol , cresol, 2,6-dimethylphenol or 2-naphthol, respectively, followed by epoxidation with a halohydrin. The structures of the synthesized triphenols were characterized by elemental analysis (EA), mass spectrometry (MS), and nuclear magnetic resonance (NMR) spectrometry, including 1H-NMR and 13C-NMR. The resulted epoxy resins were cured with 4–4′-diaminodiphenyl sulfone (DDS), and the cured products were investigated. The cured trifunctional 2,6-bis-(2-glycidyloxy-1-naphthyl-methyl)-4-methyl phenyl glycidyl ether had the highest glass transition temperature, highest thermal stability, the lowest coefficient of thermal expansion, and lowest moisture absorption of the epoxy resins studied. The internal stress of cured naphthalene-containing epoxy resin was reduced by modification with 12 wt % amino-terminated polydimethyl siloxane (ATPDMS), while the glass transition temperature was only slightly depressed. Phase separation of the silicone rubber-modified epoxy matrix was characterized by SEM. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 70: 1907–1921, 1998  相似文献   

15.
In this study, a novel Schiff base of melamine used as flame‐retardant curing agent for epoxy resins, was synthesized via condensation reaction of 4‐hydroxybenzaldehyde with melamine, followed by the addition of 9,10‐dihydro‐9‐oxa‐10‐phosphaphen‐anthrene 10‐oxide (DOPO) to the resulting imine linkage. The structure of DOPO‐containing melamine Schiff base (P‐MSB) was characterized by Fourier transformed infrared spectroscopy, 1H‐nuclear magnetic resonance (1H‐NMR) and 31P‐NMR. The compound (P‐MSB) was used as a reactive flame retardant in o‐cresol formaldehyde novolac epoxy resin (CNE) to prepare flame‐retardant epoxy resins for electronic application. The thermal and flame‐retardant properties of the epoxy resins cured by various equivalent ratios phenol formaldehyde novolac (PN) and P‐MSB were investigated by the nonisothermal differential scanning calorimetry, the thermogravimetric analysis, and limiting oxygen index test. The obtained results showed that the cured epoxy resins possessed high Tg (165°C) and good thermal stability (T5%, 321°C). Moreover, the P‐MSB/CNE systems exhibited higher limiting oxygen index (35) and more char was maintained in P‐MSB/CNE systems than that in PN/CNE system and the effective synergism of phosphorus–nitrogen indicated their excellent flame retardancy. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

16.
A novel radical dendritic macrophotoinitiator, bearing alkyl pheone moieties linked to the surface of the dendrimer, was synthesized via alcoholysis of carbosilane dendrimer and the small‐molecule photoinitiator 2‐hydroxy‐2‐methyl‐1‐(4‐tert‐butyl)phenylpropane‐1‐one. The structure of the dendritic carbosilane‐based macrophotoinitiator (MPI) was characterized using Fourier transform infrared spectroscopy, 1H NMR, 13C NMR, 29Si NMR, elemental analysis, size exclusion chromatography/multi‐angle laser light scattering, UV‐visible spectroscopy, and differential photocalorimetry (DPC). UV‐visible analysis indicates that the absorption band of photosensitive moieties shifts towards high wavelength by introducing the carbosilane dendrimer core. The DPC results demonstrate that the initiating efficiency of MPI is effective when using epoxy acrylate (EA) as a model resin. Furthermore, thermogravimetric analysis of cured EA resin indicates that the thermal stability can be improved markedly by the incorporation of MPI in the curing formulation. Copyright © 2007 Society of Chemical Industry  相似文献   

17.
A novel fluorinated biphenyl‐type epoxy resin (FBE) was synthesized by epoxidation of a fluorinated biphenyl‐type phenolic resin, which was prepared by the condensation of 3‐trifluoromethylphenol and 4,4′‐bismethoxymethylbiphenyl catalyzed in the presence of strong Lewis acid. Resin blends mixed by FBE with phenolic resin as curing agent showed low melt viscosity (1.3–2.5 Pa s) at 120–122°C. Experimental results indicated that the cured fluorinated epoxy resins possess good thermal stability with 5% weight loss under 409–415°C, high glass‐transition temperature of 139–151°C (determined by dynamic mechanical analysis), and outstanding mechanical properties with flexural strength of 117–121 MPa as well as tensile strength of 71–72 MPa. The thermally cured fluorinated biphenyl‐type epoxy resin also showed good electrical insulation properties with volume resistivity of 0.5–0.8 × 1017 Ω cm and surface resistivity of 0.8–4.6 × 1016 Ω. The measured dielectric constants at 1 MHz were in the range of 3.8–4.1 and the measured dielectric dissipation factors (tan δ) were in the range of 3.6–3.8 × 10?3. It was found that the fluorinated epoxy resins have improved dielectric properties, lower moisture adsorption, as well as better flame‐retardant properties compared with the corresponding commercial biphenyl‐type epoxy resins. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

18.
A novel phosphorous‐containing biphenol, 2‐(5,5‐dimethyl‐4‐phenyl‐2‐oxy‐1,3,2‐dioxaphosphorin‐6‐yl)‐ 1,4‐benzenediol (DPODB), was prepared by the addition reaction between 5,5‐dimethyl‐4‐phenyl‐2‐oxy‐1,3,2‐dioxaphosphorinane phosphonate (DPODP) and p‐benzoquinone (BQ). The compound (DPODB) was used as a reactive flame retardant in o‐cresol formaldehyde novolac epoxy resin (CNE) for electronic application. The structure of DPODB was confirmed by FTIR and NMR spectra. Thermal properties of cured epoxy resin were studied using differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA). The flame retardancy of cured epoxy resins was tested by UL‐94 vertical test and achieved UL‐94 vertical tests of V‐0 grade (nonflammable). © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 3842–3847, 2006  相似文献   

19.
A novel phosphorus‐containing dicyclopentadiene novolac (DCPD‐DOPO) curing agent for epoxy resins, was prepared from 9,10‐dihydro‐oxa‐10‐phosphaphenanthrene‐10‐oxide (DOPO) and n‐butylated dicyclopentadiene phenolic resin (DCPD‐E). The chemical structure of the obtained DCPD‐DOPO was characterized with FTIR, 1H NMR and 31P NMR, and its molecular weight was determined by gel permeation chromatography. The flame retardancy and thermal properties of diglycidyl ether bisphenol A (DGEBA) epoxy resin cured with DCPD‐DOPO or the mixture of DCPD‐DOPO and bisphenol A‐formaldehyde Novolac resin 720 (NPEH720) were studied by limiting oxygen index (LOI), UL 94 vertical test and cone calorimeter (CCT), and differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA), respectively. It is found that the DCPD‐DOPO cured epoxy resin possess a LOI value of 31.6% and achieves the UL 94 V‐0 rating, while its glass transition temperature (Tg) is a bit lower (133 °C). The Tg of epoxy resin cured by the mixture of DCPD‐DOPO and NPEH720 increases to 137 °C or above, and the UL 94 V‐0 rating can still be maintained although the LOI decreases slightly. The CCT test results demonstrated that the peak heat release rate and total heat release of the epoxy resin cured by the mixture of DCPD‐DOPO and NPEH720 decrease significantly compared with the values of the epoxy resin cured by NPEH720. Moreover, the curing reaction kinetics of the epoxy resin cured by DCPD‐DOPO, NPEH720 or their mixture was studied by DSC. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44599.  相似文献   

20.
Silicone–epoxy resins were synthesized through hydrosilylation of 1,2‐epoxy‐4‐vinyl‐cyclohexane with 1,3,5,7‐tetramethycyclotetrasiloxane. The silicone–epoxy resins showed high reactivity in the presence of aluminum complex/silanol compound catalysts. Curing of the resins was effected at extremely low concentrations of the aluminum acetylacetonate/Ph2Si(OH)2 catalyst to give hard materials with optical clarity. For the silicone–epoxy resins containing Si? H bonds, Al(acac)3 alone is effective for the curing. The cured silicone–epoxy resins showed excellent UV resistance. An improvement in the lifetime of UV‐LEDs was achieved using the silicone–epoxy compositions as encapsulant. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 3954–3959, 2007  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号