首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 726 毫秒
1.
The catalytic decomposition of acrylonitrile (AN) over Cu-ZSM-5 prepared with various Cu loadings was investigated. AN conversion, during which the nitrogen atoms in AN were mainly converted to N2, increased as Cu loading increased. N2 selectivities as high as 90–95% were attained. X-ray diffraction measurements (XRD) and temperature-programmed reduction by H2 (H2-TPR) showed the existence of bulk CuO in Cu-ZSM-5 with a Cu loading of 6.4 wt% and the existence of highly dispersed CuO in Cu-ZSM-5 with a Cu loading of 3.3 wt%. Electron spin resonance measurements revealed that Cu-ZSM-5 contains three forms of isolated Cu2+ ions (square-planar, square-pyramidal, and distorted square-pyramidal). The H2-TPR results suggested that in Cu-ZSM-5 with a Cu loading of 2.9 wt% and below, Cu+ existed even after oxidizing pretreatment. The activity of AN decomposition over Cu/SiO2 suggested that CuO could form N2, but, independent of the CuO dispersion, nitrogen oxides (NOx) were formed above 350 °C. Cu+ and the square-pyramidal and distorted square-pyramidal forms of Cu2+ showed low activity for AN decomposition. Temperature-programmed desorption of NH3 suggested that N2 formation from NH3 proceeded on Cu2+, resulting in the formation of Cu+. The Cu+ ions were oxidized to Cu2+ at around 300 °C. Thus, high N2 selectivity over Cu-ZSM-5 with a wide range of temperature was probably attained by the reaction over the square-planar Cu2+, which can be reversibly reduced and oxidized.  相似文献   

2.
The oxidation of benzene to phenol has been successfully carried out in air over Cu-ZSM-5 at moderate temperatures. Several parameters such as Cu loading, calcination temperature and co-exchanged metal ions influence the nature of the catalyst. At low Cu loadings, the catalyst is more selective to phenol while at high Cu loadings CO2 is the major product. In situ H2-TPR XAFS studies reveal that at low Cu loadings, Cu exists as isolated pentacoordinated ions, with 4 equatorial oxygens at 1.94 Å and a more distant axial oxygen at 2.34 Å. At higher loadings, monomeric as well as dimeric Cu species exist, with a Cu–Cu distance of 2.92 Å. This suggests that the isolated Cu sites are the active sites responsible for phenol formation. When the catalyst was calcined at 450 °C, the activity peaked in the first hour and then slowly deactivated, but when the calcination temperature was increased to 850 °C, the activity slowly increased until it reached a plateau. Analysis of the XANES region during in situ H2-TPR shows that at lower calcination temperatures two reduction peaks are present, corresponding to Cu2+ → Cu+ and Cu+ → Cu0. At high calcination temperatures, only a small fraction of the Cu undergoes the two-step reduction and most of the Cu remains in the +2 state. Slow deactivation of the catalyst calcined at 450 °C is due to migration of the Cu ions to inaccessible sites in the zeolite; at high calcination temperatures the Cu is tightly bound to the framework and is unable to migrate. EXAFS analysis of the sample calcined at 850 °C reveals two Cu–Si(Al) scattering paths at 2.83 Å. Doping the catalyst with other metals, in particular Ag and Pd, further improves the activity and selectivity of the reaction. The addition of water to the reaction increases the selectivity of the reaction by displacing the product from the active site.  相似文献   

3.
The effect of ion exchange conditions, such as Si/Al ratio, precursor copper salt, pH and concentration of the solution, on the catalytic activity in SCR of NO by propane and on the electronic state of copper ions in Cu-ZSM-5 has been studied. The NO conversion in NO SCR by C3H8 has been found to reach a maximum value at Cu/Al ratio about 0.37–0.4 and remain constant at higher Cu/Al.

ESR and UV–vis DR spectroscopy have been used to elucidate stabilization conditions of copper ions in Cu-ZSM-5 zeolites as isolated Cu2+ ions, chain copper oxide structures and square-plain oxide clusters. The ability of copper ions for reduction and reoxidation in the chain structures may be responsible for the catalytic activity of Cu-ZSM-5. These transformations of copper ions are accompanied by the observation of intervalence transitions Cu2+–Cu+ and CTLM of the chain structures in the UV–vis spectra.  相似文献   


4.
A combined Fourier transform IR (FT-IR) and electron paramagnetic resonance (EPR) study shows that copper in ‘excessively exchanged’ Cu/ZSM-5 is initially present as OH bridged Cu2+ dimers, besides isolated Cu2+ ions. Upon heating, the dimers lose water and become oxygen bridged [Cu---O---Cu]2+ complexes. These are ‘EPR-silent’, presumably as a consequence of antiferromagnetic coupling of the unpaired electrons in each Cu2+; they are, however, detectable by their perturbation of the lattice vibrations, detected by a FT-IR band at 918–923 cm−1. Reduction by hydrogen or carbon monoxide converts the [Cu---O---Cu]2+ complexes to pairs of Cu+ ions, while the color changes from green to grey. Reductive adsorption of nitrogen monoxide on Cu2+ results in the formation of Cu+---NO+. Destructive thermal desorption of nitrogen monoxide at 100°C not only restores the Cu2+ ions, but also appears to regenerate the [Cu---O---Cu]2+ complex. The results suggest that pairs of copper ions are instrumental in the catalytic decomposition of nitrogen monoxide.  相似文献   

5.
V.B. Kazansky  E.A. Pidko   《Catalysis Today》2005,110(3-4):281-293
ZSM-5 zeolites modified with Cu+ ions were prepared either by the high-temperature chemical reaction of hydrogen form with CuCl vapour or by the wet ion exchange with subsequent reduction of the modified samples in CO at 873 K. Adsorption of H2, N2 or C2H6 by Cu+ ions was studied by DRIFTS and by volumetric technique. The conclusions about the structure of adsorption complexes were supported by the DFT cluster quantum chemical calculations. The obtained results indicated that in addition to the previously reported strong adsorption of nitrogen, the univalent copper also unusually strongly adsorbs molecular hydrogen and ethane. Adsorption of hydrogen is the most amazing since the observed low-frequency shifts of the HH stretching vibrations were as high as about 1000 cm−1. This is quite different from much weaker H2 perturbation by Cu2+ cations. Adsorption of ethane by Cu+ ions also resulted in the low-frequency shifts of some of CH IR stretching bands up to 400 cm−1. The DFT cluster modelling indicated that both adsorption of hydrogen and ethane could be explained by interaction with the isolated Cu+ ions localized at the sites of the ZSM-5 framework. Quantum chemical calculations indicated the important role in the bonding of adsorbed hydrogen and ethane of electron back donation from dπ-orbitals of Cu+ ions to the σ*HH or CH orbitals. The overall yield of Cu+ sites of the strong H2 or N2 adsorption is about twice lower than the total copper content.  相似文献   

6.
On the mechanism of NO decomposition on Cu-ZSM-5 catalysts   总被引:1,自引:0,他引:1  
Decomposition of NO was studied on Cu-ZSM-5 catalysts prepared by solid state ion exchange using CuCl2 (I), CuO (II) and by conventional liquid phase ion exchange with copper acetate (III). There was no difference in the catalytic activity among samples (I), (II) and (III) using the same copper loading. Treatment of the samples in argon, in air or in NO/Ar mixture at 700°C was necessary to develop optimum catalytic activity. Transient kinetic experiments using NO carried out under isothermal conditions, showed overshoots in the N2 and O2 concentration at the front and tail edge, respectively. Fourier transform-infrared studies indicated the formation of oxidized copper sites and adsorbed NO2 species during the NO decomposition. In a proposed mechanism Cu2+(O)(NO)(NO2) intermediate was suggested to play a key role in the NO decomposition.  相似文献   

7.
Ion-exchanged pillared clays (PILCs) were studied as catalysts for selective catalytic reduction (SCR) of NO by ethylene. Three most important pillared clays, Al2O3-PILC (or Al-PILC), ZrO2-PILC (or Zr-PILC) and TiO2-PILC (or Ti-PILC), were synthesized. Cation exchanges were performed to prepare the following catalysts: Cu–Ti-PILC, Cu–Al-PILC, Cu–Zr-PILC, Cu–Al–Laponite, Fe–Ti-PILC, Ce–Ti-PILC, Ce–Ti-PILC, Co–Ti-PILC, Ag–Ti-PILC and Ga–Ti-PILC. Cu–Ti-PILC showed the highest activities at temperatures below 370°C, while Cu–Al-PILC was most active at above 370°C, and both catalysts were substantially more active than Cu-ZSM-5. No detectable N2O was formed by all of these catalysts. H2O and SO2 only slightly deactivated the SCR activity of Cu–Ti-PILC, whereas severe deactivation was observed for Cu-ZSM-5. The catalytic activity of Cu–Ti-PILC was found to depend on the method and amount of copper loading. The catalytic activity increased with copper content until it reached 245% ion-exchange. The doping of 0.5 wt% Ce2O3 on Cu–Ti-PILC increased the activities from 10% to 30% while 1.0 wt% of Ce2O3 decreased the activity of Cu–Ti-PILC due to pore plugging. Cu–Ti-PILC was found to be an excellent catalyst for NO SCR by NH3, but inactive when CH4 was used as the reducing agent. Subjecting the Cu–Ti-PILC catalyst to 5% H20 and 50 ppm SO2 at 700°C for 2 h only slightly decreased its activity. TPR results showed that the overexchanged (245%) PILC sample contained Cu2+, Cu+ and CuO. The TPR temperatures for the Cu–Ti-PILC were substantially lower than that for Cu-ZSM-5, indicating easier redox on the PILC catalyst and hence higher SCR activity.  相似文献   

8.
Pure SiO2 having a MCM-41 structure was modified by the introduction of 1 mmol/g of Al, Zr, W, B, or P. The parent silica and the modified materials were used to support a dispersed cupric oxide. The distribution, properties and thermal stability of the catalytic Cu2+-active sites were examined by ESR and IR spectroscopy and by measuring the activity in a test reaction of ethane oxidation. Modification of the parent silica MCM-41 influences drastically the stabilization of isolated Cu2+-species. Al-MCM-41 provides the most disperse (70–80%) and thermally stable state of the cupric phase. However, no simple correlation exists between the total number of surface Cu2+-sites and the catalytic activity. The specific catalytic activity (per one Cu2+-active site accessible to the reactants) depends strongly on the structure of the localized site. Isolated Cu2+-sites grafted to Al-MCM-41 show relatively high activity for the sample calcined at 520 °C. Thermal treatment at 650–750 °C causes a sharp loss of specific Cu2+ catalytic activity of Cu/Al-MCM-41 (as is also the case with CuH-ZSM-5). The less disperse cupric phase in non-modified MCM-41 demonstrates a higher specific catalytic activity.  相似文献   

9.
The redox behavior and states of Cu ions in Cu ion-exchanged MFI (Cu(n)-MFI, n: exchange level) have been investigated by means of temperature-programmed desorption (TPD) of oxygen, diffuse reflectance (DR) UV–VIS spectroscopy and Cu+ photoluminescence (PL) spectroscopy. TPD chromatograms of oxygen from Cu(n)-MFI were characterized by the appearance of three desorption peaks: (below 200°C), β (300–500°C) and γ (above 500°C). It has been suggested that and β oxygen are extra-lattice oxygen adsorbed on Cu ions, while γ oxygen is lattice oxygen coordinated to Cu ions. The Cu+ emission was tremendously reduced once the catalyst contacted with O2 and NO at elevated temperatures such as 500°C, and it was almost invisible under the working state of the catalyst, suggesting that PL-active Cu+ ions are not real active sites under the working state. The desorption of β oxygen was intimately related to the creation of active centers for the NO decomposition reaction. DR measurements showed that the desorption of β oxygen caused tetragonal Cu2+ to decrease and trigonal Cu2+ to increase simultaneously. It has been proposed that both Cu2+ and Cu+ are involved in the NO decomposition catalysis over Cu-MFI under the working state.  相似文献   

10.
The H2-TPR (temperature-programmed reduction) study was performed for supported copper oxide catalysts with low loading (0.5 wt% as copper). Among the various kinds of support materials (γ-Al2O3, TiO2, ZrO2, SiO2, ZSM-5), alumina-supported copper oxide indicated a one-electron reduction behavior of Cu2+ into Cu+ ions in the presence of H2. The reduction of the isolated Cu2+ species in a tetragonally distorted octahedral symmetry into the low coordinated Cu+ ions was identified by means of X-ray absorption spectroscopy (XANES and EXAFS). The isolated Cu+ ions hosted by γ-Al2O3 surface were prevented from further reduction into metallic Cu0 state under reducing condition with H2 at 773 K. Less dispersed supported copper oxide species were easily reduced to Cu0 metal particles with H2 at 573 K regardless of the kinds of support materials. It is suggested that the one-electron redox behavior of the isolated copper oxide species over γ-Al2O3 promotes the catalytic reduction of NO with CO in the presence of oxygen on the basis of redox-type mechanism between Cu2+ and Cu+ in atomically dispersed state.  相似文献   

11.
H-AITS-1 zeolite with Si/Ti = 50 and Si/Al = 50 was employed in preparing catalyst samples by ion-exchange and impregnation with a copper nitrate solution to obtain 0.24–1.15 wt.% and 1.5, 2 and 2.5 wt.% Cu loading, respectively. The catalytic properties for the NO decomposition were compared with that of Cu-ZSM-5 (Si/Al = 25 with 2 wt.% Cu loading) and similarity was found between the AITS-1 based samples and Cu-ZSM-5. Due to the higher acidity, the activity at 500°C per total copper atoms (an apparent turnover frequency, TOF) was significantly higher over Cu based AITS-1 samples being 2–3 × 10−3 s−1 as compared to 1 × 10−3 s−1 measured on Cu-ZSM-5. For the ion-exchanged Cu-AITS-1 there was an increase in TOF with increasing copper content, whereas on the impregnated samples a decrease in TOF was found. On all catalysts there was a maximum in the NO conversion at 500–550°C. The amount of NO per copper atom measured by temperature programmed desorption (TPD) was about the same as that on Cu-ZSM-5 and the features of the TPD were also similar. At the first contact of the catalyst at 500°C with the 2 vol% NO/Ar gas a transient N2O formation and a considerable delay in the O2 formation was observed. This could, however, be reproduced only on fresh catalyst, while all further transients showed different but reproducible features using the same sample.  相似文献   

12.
This paper deals with the redox properties of Cu ions implanted in ZSM-5 and supported on Al2O3, catalysts active in the selective reduction of NO by hydrocarbons such as propane. Data on the reducibility of the Cu systems in various atmospheres (vacuum, CO, H2, O2) and on their DeNOx activity are presented. The methods used to obtain informations on the surface and bulk transformations (and their link with catalytic behaviour) are complementary: UV–visible diffuse reflectance spectroscopy being useful to detect the presence of Cu2+ and Cu0, while Cu+ is detected indirectly by the analysis of the IR spectrum of CO bound selectively to this cation.

The main contributions to the previous knowledge are the following: it is possible to distinguish CO bound to isolated and non-isolated Cu+ ions; the isolated Cu2+ ions are reducible under vacuum without participation of organic impurities; the more active solids for the NO reduction into N2 are characterized by the presence of isolated Cun+ ions beside the additional influence of the zeolitic framework; after the formation of Cu+ ions the redox cycles are reversible but, after the formation of Cu0, the reversibility or irreversibility of the redox cycles and the restoration of the SCR activity are function of the copper content; the activity decreases after agglomeration into bulk oxides; there is no formation of bulk CuO during the reaction and, with reducing and moderate oxidizing mixtures, part of the copper remains as cuprous ions.  相似文献   


13.
Several titania systems were synthesized by the sol–gel method using two different titanium precursors (titanium isopropoxide or tetrachloride) and diverse ageing methods (magnetic stirring, sonication, reflux and microwave radiation). Screening of such different synthetic conditions led us to choose titanium isopropoxide as the titanium precursor and sonication as the method of choice for ageing the gel. Application of the method to the synthesis of a platinum-doped system resulted in a solid with a BET surface area of 57 m2/g and consisting of 100% anatase titania. The system was submitted to different oxidative and reductive treatments in order to study the effect of such treatments on catalytic performance in gas-phase selective photooxidation of propan-2-ol. Interestingly, both oxidation and reduction at 850 °C led to an increase in molar conversion and selectivity to acetone as compared to calcination at 500 °C. So much so, that oxidation at 850 °C either in synthetic air flow or in static air resulted in better catalytic performance than Degussa P25, despite the fact that our catalysts consisted in very low surface area (6–8 m2/g) rutile titania specimens. XPS analyses of the systems showed that thermal treatment at 850 °C resulted in electron transfer from titania to Pt0 particles through the so-called strong metal-support interaction (SMSI) effect. Furthermore, the greater the SMSI effect, the better the catalytic performance. Improvement in photocatalytic activity is explained in terms of avoidance of electron–hole recombination through the electron transfer from titania to platinum particles.  相似文献   

14.
The role of copper was studied in the skeletal isomerization of 1-butene over copper-modified mesoporous MCM-41 molecular sieve and Beta zeolite. The Cu–H-MCM-41 and Cu–H-Beta catalysts were synthesized in our laboratory and characterized by XRD, nitrogen adsorption, X-ray fluorescence, FTIR of adsorbed pyridine and direct current plasma atomic emission spectrometry. The oxidation state of copper after oxidation and reduction in Cu–H-MCM-41 was evaluated by FTIR with probe molecules. Copper ion-exchanged and the proton forms of MCM-41 and Beta catalysts were tested towards 1-butene skeletal isomerization by varying the weight hourly space velocity and temperature. Quantum chemical calculations at the B3LYP/6-31 + G** level were performed in order to understand the role of copper at the molecular level.

Copper in Cu–H-MCM-41 pretreated in synthetic air was mostly in the form of Cu2+ but reduced during the catalytic experiment to the metallic form Cu0 via Cu+. Even if the copper exchange decreased the amount of Brønsted acid sites, Cu–H-MCM-41 pretreated in synthetic air was more active than H-MCM-41 towards 1-butene skeletal isomerization. The enhanced catalytic activity is due to copper Cu+, which was formed during the reaction. Introduction of copper into H-Beta, however, did not have any effect at all on the performance of the catalyst. The probable reason for this is the high initial activity of copper-modified H-Beta causing a very fast reduction of copper to the inactive metallic form Cu0.  相似文献   


15.
Cu-ion-exchanged iron-pillared interlayer clays (Fe-PILCs) were prepared under different pH conditions to analyze the influence on the distribution of the copper species over their structure, and on the catalytic performance for the selective catalytic reduction (SCR) of NOx by propene. It was observed that for those samples prepared without pH control, the copper was as isolated Cu2+ ions. When the samples were prepared under acid pH, the catalytic activity decreased and an appreciable CO production was observed, likely due to the low amount of Cu2+ cations in those catalysts. Finally, for the samples prepared under alkaline pH, the copper was as Cu2+ ions and CuO clusters. Their catalytic tests showed the best results for the SCR of NOx. The presence of CuO species led to an improvement in NOx yield to N2. With the catalytic tests and a study by in situ FTIR of SCR of NO, a reaction mechanism has been proposed, where the reaction intermediates are mainly acetates, organic nitro compounds and nitrous oxide species.  相似文献   

16.
The effect of isovalent and aliovalent substitutions in Bi0.5Na0.485La0.005TiO3 (BNLT) compounds were studied within the additive ranges of 0–2.5 at%. The Zr4+, Nb5+ and Fe3+ ions were selected as the substituents. The modified BNLT compounds were prepared by conventionally mixed-oxide method. The calcination and sintering were performed at the temperatures of 750–850 °C and 1050–1150 °C, respectively. An increase in the substituents contents affected the physical and piezoelectric properties. The BNLT compositions with the addition of 1 at% Zr4+, Nb5+ and Fe3+ ions exhibited high relative permittivities (r) at 730, 735 and 660, respectively. The modified-BNLT with an addition of 1.0 at% Fe provided a piezoelectric coefficient (d33) of 155 pC/N, Curie temperature (Tc) of 320 °C and electromechanical coupling factors in planar (kp) and thickness (kt) modes of 15 and 45%, respectively.  相似文献   

17.
The adsorption of N2 on a copper ion-exchanged ZSM-5 sample (CuZSM-5) prepared by ion exchange using an aqueous solution of copper propionate, Cu(C2H5COO)2, was examined at room temperature by measuring the FT-IR spectra, adsorption isotherms and heat of adsorption. This sample was found to be extremely efficient in terms of N2 adsorption with regard to both the amount and the energy (i.e., heat) of adsorption, compared with samples prepared by a conventional ion-exchange method using an aqueous solution involving Cu2+ and simple counter ions, Cl or NO3. To clarify the specificity of the newly-prepared sample, the ion-exchange of ZSM-5 with Cu2+ was carried out by employing aqueous solutions involving Cu2+ and various types of counter ions [propionate (C2H5COO), acetate (CH3COO), formate (HCOO), chloride (Cl) and nitrate (NO3) ions]. When the ion exchange was performed by using a Cu(C2H5COO)2 or Cu(CH3COO)2 solution, the Cu2+ species with propionate or acetate ligand (in the monomer state) were ion-exchanged in ZSM-5, as confirmed by the DR, EPR and FT-IR spectra for CuZSM-5. In contrast, Cu2+ species were present in the form of aquo-complexes in samples prepared with other solutions. This distinct difference can be ascribed to the difference in the pKa values of the counter ions; carboxylate ions, with a high pKa value, are inclined to form a complex with Cu2+. Using this newly applied Cu(C2H5COO)2 solution, the present ion-exchange method has the potential to develop new effective materials that possess the specific adsorption and catalytic properties of CuZSM-5.  相似文献   

18.
Methyl methacrylate was polymerized in aqueous medium initiated by a copper(II)-ascorbic acidoxygen system at 40°C and a kinetic study of the reaction is presented. The rate of polymerization, Rp showed an increase, constancy and then a decrease with increase in the [Cu2+]. The order with respect to [Cu2+] was 0.5 in the rate increase region. The order in monomer concentration changed gradually from 1.0 to 2.0 with increase in [Cu2+]. Rp became independent of ascorbic acid (AA) concentration and oxygen concentration at high concentrations. These results indicate that termination by mutual interaction of chain radicals predominates at low [Cu2+] while termination was exclusively by metal ions at high [Cu2+]. Rp was also observed to increase with temperature and ionic strength and to Kp/Kt1/2 value was calculated and compared with literature values. Chain lengths were determined by viscometry for the polymers obtained under various experimental conditions.  相似文献   

19.
Cu/Mg/Al mixed oxides (CuO = 4.0–12.5 wt%), obtained by calcination of hydrotalcite-type (HT) anionic clays, were investigated in the selective catalytic reduction (SCR) of NO by NH3, either in the absence or presence of oxygen, and their behaviours were compared with that of a CuO-supported catalyst (CuO = 10.0 wt%), prepared by incipient wetness impregnation of a Mg/Al mixed oxide also obtained by calcination of an HT precursor. XRD analysis, UV-visible-NIR diffuse reflectance spectra and temperature-programmed reduction analyses showed the formation, in the mixed oxide catalysts obtained from HT precursors, mainly of octahedrally coordinated Cu2+ ions, more strongly stabilized than Cu-containing species in the supported catalyst, although the latter showed a lower percentage of reduction. The presence of well dispersed Cu2+ ions improved the catalytic performances, although similar behaviours were observed for all catalysts in the absence of oxygen. On the contrary, when the mixture with excess oxygen was fed, very interesting catalytic performances were obtained for the catalyst richest in copper (CuO = 12.5 wt%). This catalyst exhibited a behaviour comparable to that of a commercial V2O5–WO3TiO2 catalyst, without any deactivation phenomena after four consecutive cycles and following 8 h of time-on-stream at 653 K. Decreasing the copper content or increasing the calcination time and temperature led to considerably poorer performances and catalytic behaviours similar to that of the CuO-supported catalyst, due to the side-reaction of NH3 combustion on the free Mg/Al mixed oxide surface.  相似文献   

20.
The effects of Zr doping on the existence of Cu and the catalytic performance of Ce0.7−xZrxCu0.3O2 for CO oxidation were investigated. The characterization results showed that all samples have a cubic structure, and a small amount of Zr doping facilitates Cu2+ ions entering the CeO2 lattice, but excessive Zr doping leads to the formation of surface CuO crystals again. Thus, the number of oxygen vacancies caused by the Cu2+ entering the lattice (e.g., Cu2+–□–Ce4+; □: oxygen vacancy), and the amount of reducible copper species caused by CuO crystals, varies with the Zr doping. Catalytic CO oxidation tests indicated that the oxygen vacancy and the reducible copper species were the adsorption and activation sites of O2 and CO, respectively, and the cooperative effects between them accounted for the high CO oxidation activity. Thus, the samples x = 0.1 and 0.3, which possessed the most oxygen vacancy or reducible copper species, showed the best activity for CO oxidation, with full CO conversion obtained at 110 °C. The catalyst is also stable and has good resistance to water during the reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号