首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 180 毫秒
1.
左娟  孙岚  赖跃坤  聂茶庚  林昌健 《功能材料》2004,35(Z1):2870-2872
采用两步氧化法制备了多孔氧化铝模板(AAO),并利用AAO结合用电化学诱导溶胶-凝胶法制备了锐钛矿型的TiO2纳米线阵列,探讨了形成TiO2纳米线阵列的生长机理.发现TiO2纳米线是由Au基底沿着孔洞逐步向上生长,直接生成纳米线,因而可以通过控制氧化铝模板的尺寸和电化学沉积的时间来控制纳米线的长径比.  相似文献   

2.
双扩散AAO模板法制备AgCl纳米线及其光催化性能   总被引:1,自引:0,他引:1  
采用二次阳极氧化法,制得具有一定厚度有序性较高的阳极氧化铝(AAO)模板,并结合溶液的双扩散法制备AgCl纳米线,利用XRD、SEM和TEM等分析手段对模板和纳米线进行了表征,结果表明,用该方法制备的AgCl纳米线阵列分布均匀,取向性好,直径与AAO模板的孔径一致.通过纳米线阵列膜对罗丹明B的降解情况对其光催化活性进行了测试,结果表明,AgCl纳米线具有良好的光催化性能.  相似文献   

3.
通过溶胶填充模板法制备了Li4Ti5O12纳米线阵列,采用SEM、EDS、XRD对纳米线形貌和组成进行了表征.实验结果表明:以孔径为100nm阳极氧化铝模板(AAO),于-0.1MPa负压环境中填充0.8 mol/L Li4Ti5O12溶胶,80℃干燥,900℃空气气氛中焙烧20h,重复填充-干燥-焙烧四次,得到平均直径为70nm尖晶石结构的Li4Ti5O12纳米线阵列.其直径和长度分别由模板的孔径、厚度,溶胶浓度和填充次数控制,晶体结构取决于焙烧时间和温度.并在实验基础上,分析了纳米线形成机理.  相似文献   

4.
氧化锌纳米线/管阵列的溶胶-凝胶模板法制备与表征   总被引:8,自引:0,他引:8  
用溶胶-凝胶法在氧化铝模板中制备了直径约为15、30、50、60nm的有序氧化锌纳米线/管阵列.用扫描电镜(SEM)、透射电镜(TEM)和X射线衍射仪(XRD)对氧化锌纳米线/管的形貌、结构以及相组成进行了分析.结果发现,纳米线的形貌依赖于氧化铝模板中孔洞的形貌,纳米线的长度受控于氧化铝模板的厚度,外径与氧化铝模板的孔径相等.通过控制溶胶的浓度以及氧化铝模板在溶胶中的浸泡时间可以制备出纳米管.  相似文献   

5.
牛高  谭秀兰  韩尚君  罗江山 《功能材料》2011,42(Z4):659-661
采用多孔氧化铝(AAO)模板脉冲电沉积法制备了强辐射源用铜纳米线阵列材料,并用扫描电子显微镜(SEM)、能谱(EDS)和X射线衍射(XRD)对其进行了结构袁征.结果表明电沉积的峰值电流强度和辅助阴极可以影响铜纳米线的表面质量、长度分布均匀性和微区长度起伏.减小峰值电流强度,可以明显改善单根铜纳米线的表面质量,但是对铜纳...  相似文献   

6.
将AAO模板分别在体积比为1:9(约15%(质量分数))的H_3PO_4溶液和10%(质量分数)的NaOH溶液中进行蚀刻处理,结果显示,AAO模板经过一个扩孔过程,最终孔间壁较薄部分被彻底蚀刻掉,孔间壁较厚部分留下形成氧化铝纳米线状结构.在2种蚀刻溶液中.NaOH溶液对模板的蚀刻比H_3PO_4溶液的快.这些结果对于AAO扩孔、氧化铝纳米结构的合成以及模板的去除具有一定的指导意义.  相似文献   

7.
首先采用三次阳极氧化法制备了具有Y形孔道的氧化铝(AAO)模板,然后采用直流电化学沉积法,在模板内成功合成了分叉Ni纳米线的有序阵列.通过X射线衍射仪(XRD)、扫描电子显微镜(SEM)和透射电子显微镜(TEM)对所合成样品的晶体结构和形貌进行了表征测试.结果表明,制备的Ni纳米线分布均匀、排列有序,呈Y形分又结构,其...  相似文献   

8.
在磷酸溶液中,采用二次铝阳极氧化法得到了多孔铝阳极氧化膜(AAO).以AAO为模板,选用直流电沉积方法在孔内组装CdS半导体纳米线,溶去模板后,获得粗细均一、直径约为100nm、长度约为1.5μm的纳米线,与AAO模板的孔径一致.该方法在制备过程中,无需对AAO模板进行去除阻挡层、喷金或预镀金属等处理过程,而是直接在纳米孔内电沉积CdS,形成CdS半导体纳米线阵列.该方法工艺简单,操作方便,容易获得半导体CdS的一维纳米材料.TEM和XRD测试结果表明,CdS纳米线为六方晶型结构.对CdS纳米线的生长机理还进行了初步的分析和探讨.  相似文献   

9.
CuS纳米线阵列的制备   总被引:1,自引:0,他引:1  
任贤明  江奇  杨高强  柯川  易锦  赵勇 《功能材料》2007,38(4):652-654
将多孔阳极氧化铝模板(AAO)的电化学沉积技术与真空硫化技术相结合,在制备Cu纳米线的基础之上,制备得到了CuS纳米线阵列.采用扫描电子显微镜电镜和X射线衍射仪对二次氧化的AAO模板和所得Cu与CuS纳米线的形貌和结构进行了表征,结果表明所得CuS纳米线不仅具有良好的有序阵列,而且具有多晶结构.在硫化过程中,随着硫化温度的升高,CuS结晶程度增大,在500~550℃时,达到最大的结晶程度.  相似文献   

10.
制备了具有有序孔洞多孔阳极氧化铝 (AAO) , 并以之为模板通过溶胶2凝胶法制备高度取向的WO 3·H 2O纳米线阵列 , 用 X射线衍射、XPS、 扫描电镜 (SEM) 和比表面积仪进行表征。结果表明 : WO 3·H 2O纳米线线径与 AAO模板的孔径一致 , 且分布均匀 , 线径为 26 nm , 线长为 1. 1μm; 与相同条件下用玻纤布作载体制备的 WO 3·H 2O膜相比 , 其平均晶粒小 , 低密度 , 高比表面积。将催化剂 WO 3·H 2O/ AAO与 WO 3·H 2O/玻纤布两者分别对气相甲醛进行光催化降解反应以评价它们的光催化活性 , 得出 WO 3·H 2O纳米线阵列光催化降解气相甲醛反应速率常数大约是 WO 3·H 2O/玻纤布的 3. 4 倍 , 说明以 AAO 为模板制备的 WO 3·H 2O纳米线阵列具有更高的光催化活性。  相似文献   

11.
Ni nanowires were prepared by electrodeposition in porous anodized aluminum oxide (AAO) template from a composite electrolyte solution. Well-ordered Ni nanowire arrays with controllable length were then made by the partial removal of AAO using a mixture of phosphoric acid and chromic acid (6 wt pct H3PO4:1.8 wt pct H3CrO4). The images of Ni nanowire arrays were studied by scanning electron microscopy (SEM) to determine the relationship between etching time and the length of Ni nanowire arrays. The results indicate that the length of nanowires exposed from the template can be accurately controlled by controlling etching time.  相似文献   

12.
Ni nanowires were prepared by electrodeposition in porous anodized aluminum oxide (AAO) template from a composite electrolyte solution. Well-ordered Ni nanowire arrays with controllable length were then made by the partial removal of AAO using a mixture of phosphoric acid and chromic acid (6 wt pct H3PO4: 1.8 wt pct H3CrO4). The images of Ni nanowire arrays were studied by scanning electron microscopy (SEM) to determine the relationship between etching time and the length of Ni nanowire arrays. The results indicate that the length of nanowires exposed from the template can be accurately controlled by controlling etching time.  相似文献   

13.
袁新国  彭乔 《材料保护》2011,44(8):1-3,11,88
一维纳米材料在光学、电学、磁学等领域有着广阔的应用前景。采用二次阳极氧化法,结合逐级降压法制备了多孔阳极氧化铝(AAO)模板,然后在其上交流电沉积了单晶镍纳米线阵列。利用SEM,XRD,TEM等对镍纳米线阵列的形貌和结构进行了表征,探讨了沉积效果与沉积电流密度一时间曲线和稳定沉积电流密度大小之间的关系。结果表明:沉积电...  相似文献   

14.
采用紫外线光刻技术与电化学沉积相结合的方法,成功制备了不同图案的铜纳米线阵列:一种是圆形图案;另一种是QDU图案.首先利用紫外线光刻技术在多孔阳极氧化铝模板(AAO)生成预设图案,以此作为"二次模板";再利用电化学方法将铜纳米线沉积到"二次模板"的开孔中.扫描电镜(SEM)测试结果表明,大面积、高规整的铜纳米线图案阵列各自独立地立在基底上, 同时,用电子能谱(EDS)分析了铜纳米线的化学成分.透射电镜(TEM)也探测到了铜纳米线的微结构.  相似文献   

15.
本文采用一种简单而有效的电化学方法在硫酸铵体系中利用氧化铝模板(AAO)成功制备出规则有序的Ni的管状纳米阵列.使用这种方法可获得外径约为70nm,内径约为50nm的Ni纳米管.对所得的Ni纳米管进行了扫描电镜(SEM)、透射电镜(TEM)、选区电子衍射图(SAED)和X射线衍射(XRD)分析,结果表明:该方法制备的Ni纳米管高度有序,大小均一,其形貌受控于氧化铝模板的结构,外径与模板的孔径相等.  相似文献   

16.
在0.3mol/dm3草酸溶液中,通过不同纯度铝的恒电位二次阳极氧化制备了纳米孔氧化铝模板,并用场发射扫描电子显微镜(FE-SEM)和原子力显微镜(AFM)观察模板结构.实验结果表明,一次氧化除膜后低纯度铝基体表面呈现较为规则的六边形结构,这种蜂巢结构有利于二次氧化过程中获得有序度更高的纳米孔模板.低纯度铝制备的模板表面被晶界分隔为微小的区域,只是在较窄区域内才出现六边形规则排列的纳米孔.恒电位40V时所得模板经扩孔处理后,孔径由35nm增大到100nm左右,且孔径大小几乎一致.从纳米孔的有序度来看,由低纯度铝制备模板还需要进一步优化阳极氧化参数.  相似文献   

17.
Zhao Q  Wen G  Liu Z  Fan Y  Zou G  Li L  Zheng R  Ringer SP  Mao HK 《Nanotechnology》2011,22(12):125603
High-density, vertically aligned CrO(2) nanowire arrays were obtained via atmospheric-pressure CVD assisted by AAO templates. The CrO(2) nanowire arrays show remarkably enhanced coercivity compared with CrO(2) films or bulk. It was found that the length of the nanowires is greatly influenced by the pore diameter of the AAO template used. The growth mechanism and the pore size dependence of the CrO(2) nanowire arrays are discussed. The present method provides a useful approach for the synthesis of CrO(2) nanowire arrays. Such highly ordered nanowire arrays within an AAO template may have important applications in ultrahigh-density perpendicular magnetic recording devices and the mass production of spintronic nanodevices.  相似文献   

18.
制备了具有有序孔洞多孔阳极氧化铝 (AAO) , 并以之为模板通过溶胶2凝胶法制备高度取向的WO 3·H 2O纳米线阵列 , 用 X射线衍射、XPS、 扫描电镜 (SEM) 和比表面积仪进行表征。结果表明 : WO 3·H 2O纳米线线径与 AAO模板的孔径一致 , 且分布均匀 , 线径为 26 nm , 线长为 1. 1μm; 与相同条件下用玻纤布作载体制备的 WO 3·H 2O膜相比 , 其平均晶粒小 , 低密度 , 高比表面积。将催化剂 WO 3·H 2O/ AAO与 WO 3·H 2O/玻纤布两者分别对气相甲醛进行光催化降解反应以评价它们的光催化活性 , 得出 WO 3·H 2O纳米线阵列光催化降解气相甲醛反应速率常数大约是 WO 3·H 2O/玻纤布的 3. 4 倍 , 说明以 AAO 为模板制备的 WO 3·H 2O纳米线阵列具有更高的光催化活性。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号